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Abstract

This paper presents a unified, e�cient model of random decision forests
which can be applied to a number of machine learning, computer vision
and medical image analysis tasks.
Our model extends existing forest-based techniques as it unifies clas-
sification, regression, density estimation, manifold learning, semi-
supervised learning and active learning under the same decision forest
framework. This means that the core implementation needs be writ-
ten and optimized only once, and can then be applied to many diverse
tasks. The proposed model may be used both in a generative or dis-
criminative way and may be applied to discrete or continuous, labelled
or unlabelled data.
The main contributions of this paper are: 1) proposing a single, proba-
bilistic and e�cient model for a variety of learning tasks; 2) demonstrat-
ing margin-maximizing properties of classification forests; 3) introduc-
ing density forests for learning accurate probability density functions;
4) proposing e�cient algorithms for sampling from the forest genera-
tive model; 5) introducing manifold forests for non-linear embedding
and dimensionality reduction; 6) proposing new and e�cient forest-



based algorithms for transductive and active learning. We discuss how
alternatives such as random ferns and extremely randomized trees stem
from our more general model.
This paper is directed at both students who wish to learn the ba-
sics of decision forests, as well as researchers interested in our new
contributions. It presents both fundamental and novel concepts in a
structured way, with many illustrative examples and real-world appli-
cations. Thorough comparisons with state of the art algorithms such
as support vector machines, boosting and Gaussian processes are pre-
sented and relative advantages and disadvantages discussed. The many
synthetic examples and existing commercial applications demonstrate
the validity of the proposed model and its flexibility.
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1
Overview and scope

This document presents a unified, e�cient model of random decision
forests which can be used in a number of applications such as scene
recognition from photographs, object recognition in images, automatic
diagnosis from radiological scans and semantic text parsing. Such ap-
plications have traditionally been addressed by di↵erent, supervised or
unsupervised machine learning techniques.

In this paper, diverse learning tasks such as regression, classification
and semi-supervised learning are explained as instances of the same
general decision forest model. This unified framework then leads to
novel uses of forests, e.g. in density estimation and manifold learning.
The corresponding inference algorithm can be implemented and opti-
mized only once, with relatively small changes allowing us to address
di↵erent tasks.

This paper is directed at engineers and PhD students who wish to
learn the basics of decision forests as well as more senior researchers
interested in the new research contributions.

We begin by presenting a roughly chronological, non-exhaustive sur-
vey of decision trees and forests, and their use in the past two decades.
Further references will be available in the relevant chapters.
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2 Overview and scope

1.1 A brief literature survey

One of the seminal works on decision tress is the Classification and Re-
gression Trees (CART) book of Breiman et al. [12], where the authors
describe the basics of decision trees and their use for both classifica-
tion and regression. However, training optimal decision trees from data
has been a long standing problem, for which one of the most popular
algorithms is “C4.5” of Quinlan [72].

In this early work trees are used as individual entities. However,
recently it has emerged how using an ensemble of learners (e.g. weak
classifiers) yields greater accuracy and generalization.1 One of the ear-
liest references to ensemble methods is in the boosting algorithm of
Schapire [78], where the author discusses how iterative re-weighting of
training data can be used to build accurate “strong” classifiers as linear
combination of many “weak” ones.

A random decision forest is instead an ensemble of randomly trained
decision trees. Decision forests seem to have been introduced for the
first time in the work of T. K. Ho for handwritten digit recognition [45].
In that work the author discusses tree training via randomized feature
selection; a very popular choice nowadays. All tree outputs are fused
together by averaging their class posteriors. In subsequent work [46]
forests are shown to yield superior generalization to both boosting and
pruned C4.5-trained trees on some tasks. The author also shows com-
parisons between di↵erent split functions in the tree nodes. A further
application of randomized trees to digit and shape recognition is re-
ported in [3].

Breiman’s work in [10, 11] further consolidated the random forest
model. However, the author introduces a di↵erent way of injecting ran-
domness in the forest by randomly sampling the labelled training data
(“bagging”). The author also describes techniques for predicting the
forest test error based on measures of tree strength and correlation.

In computer vision, ensemble methods became popular with the
seminal face and pedestrian detection papers of Viola and Jones [99,
98]. Recent years have seen an explosion of forest-based techniques in

1
Depending on perspective trees can be seen as weak or strong classifiers [102].
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the machine learning, vision and medical imaging literature [9, 15, 24,
29, 33, 35, 52, 53, 54, 56, 58, 59, 60, 61, 65, 70, 80, 83, 88, 102]. Decision
forests compare favourably with respect to other techniques [15] and
have lead to one of the biggest success stories of computer vision in
recent years: the Microsoft Kinect for XBox 360 [37, 82, 100].

1.2 Outline

The document is organized as a tutorial, with di↵erent chapters for
di↵erent tasks and structured references within. It was compiled in
preparation for the homonymous tutorial presented at the International
Conference on Computer Vision (ICCV) held in Barcelona in 2011.
Corresponding slides and demo videos may be downloaded from [1].

A new, unified model of decision forests is presented in chapter 2.
Later chapters show instantiations of such model to specific tasks such
as classification (chapter 3) and regression (chapter 4). Chapter 5 in-
troduces, for the first time, the use of forests as density estimators.
The corresponding generative model gives rise to novel manifold forests
(chapter 6) and semi-supervised forests (chapter 7). Next, we present
details of the general forest model and associated training and testing
algorithms.



2
The random decision forest model

Problems related to the automatic or semi-automatic analysis of com-
plex data such as text, photographs, videos and n-dimensional medical
images can be categorized into a relatively small set of prototypical
machine learning tasks. For instance:

• Recognizing the type (or category) of a scene captured in a
photograph can be cast as classification, where the output is
a discrete, categorical label (e.g. a beach scene, a cityscape,
indoor etc.).

• Predicting the price of a house as a function of its distance
from a good school may be cast as a regression problem. In
this case the desired output is a continuous variable.

• Detecting abnormalities in a medical scan can be achieved
by evaluating the scan under a learned probability density

function for scans of healthy individuals.
• Capturing the intrinsic variability of size and shape of pa-
tients brains in magnetic resonance images may be cast as
manifold learning.

• Interactive image segmentation may be cast as a semi-

4



2.1. Background and notation 5

supervised problem, where the user’s brush strokes define
labelled data and the rest of image pixels provide already
available unlabelled data.

• Learning a general rule for detecting tumors in images using
minimal amount of manual annotations is an active learning

task, where expensive expert annotations can be optimally
acquired in the most economical fashion.

Despite the recent popularity of decision forests their application,
has been confined mostly to classification tasks. This chapter presents
a unified model of decision forests which can be used to tackle all the
common learning tasks outlined above: classification, regression, den-
sity estimation, manifold learning, semi-supervised learning and active
learning.

This unification yields both theoretical and practical advantages. In
fact, we show how multiple prototypical machine learning problems can
be all mapped onto the same general model by means of di↵erent pa-
rameter settings. A practical advantage is that one can implement and
optimize the associated inference algorithm only once and then apply
it, with relatively small modifications, in many tasks. As it will become
clearer later our model can deal with both labelled and unlabelled data,
with discrete and continuous output.

Before delving into the model description we need to introduce the
general mathematical notation and formalism. Subsequent chapters will
make clear which components need be adapted and how for each specific
task.

2.1 Background and notation

2.1.1 Decision tree basics

Decision trees have been around for a number of years [12, 72]. Their
recent revival is due to the discovery that ensembles of slightly di↵erent
trees tend to produce much higher accuracy on previously unseen data,
a phenomenon known as generalization [3, 11, 45]. Ensembles of trees
will be discussed extensively throughout this document. But let us focus
first on individual trees.
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Fig. 2.1:Decision tree. (a) A tree is a set of nodes and edges organized
in a hierarchical fashion. In contrast to a graph, in a tree there are no
loops. Internal nodes are denoted with circles and terminal nodes with
squares. (b) A decision tree is a tree where each split node stores a test
function to be applied to the incoming data. Each leaf stores the final
answer (predictor). This figure shows an illustrative decision tree used
to figure out whether a photo represents and indoor or outdoor scene.

A tree is a collection of nodes and edges organized in a hierarchical
structure (fig. 2.1a). Nodes are divided into internal (or split) nodes
and terminal (or leaf) nodes. We denote internal nodes with circles
and terminal ones with squares. All nodes have exactly one incoming
edge. Thus, in contrast to graphs a tree does not contain loops. Also, in
this document we focus only on binary trees where each internal node
has exactly two outgoing edges.

A decision tree is a tree used for making decisions. For instance,
imagine we have a photograph and we need to construct an algorithm
for figuring out whether it represents an indoor scene or an outdoor
one. We can start by looking at the top part of the image. If it is blue
then that probably corresponds to a sky region. However, if also the
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bottom part of the photo is blue then perhaps it is an indoor scene
and we are looking at a blue wall. All the questions/tests which help
our decision making can be organized hierarchically, in a decision tree
structure where each internal node is associated with one such test.
We can imagine the image being injected at the root node, and a test
being applied to it (see fig. 2.1b). Based on the result of the test the
image data is then sent to the left or right child. There a new test is
applied and so on until the data reaches a leaf. The leaf contains the
answer (e.g. “outdoor”). Key to a decision tree is to establish all the
test functions associated to each internal node and also the decision-
making predictors associated with each leaf.

A decision tree can be interpreted as a technique for splitting com-
plex problems into a hierarchy of simpler ones. It is a hierarchical piece-
wise model. Its parameters (i.e. all node tests parameters, the leaves
parameters etc.) could be selected by hand for simple problems. In
more complex problems (such as vision related ones) the tree structure
and parameters are learned automatically from training data. Next we
introduce some notation which will help us formalize these concepts.

2.1.2 Mathematical notation

We denote vectors with boldface lowercase symbols (e.g. v), matrices
with teletype uppercase letters (e.g. M) and sets in calligraphic notation
(e.g. S).

A generic data point is denoted by a vector v = (x
1

, x
2

, · · · , x
d

) 2
Rd. Its components x

i

represent some scalar feature responses. Such
features are kept general here as they depend on the specific application
at hand. For instance, in a computer vision application v may represent
the responses of a chosen filter bank at a particular pixel location. See
fig. 2.2a for an illustration.

The feature dimensionality d may be very large or even infinite
in practice. However, in general it is not necessary to compute all d
dimensions of v ahead of time, but only on a as-needed basis. As it
will be clearer later, often it is advantageous to think of features as
being randomly sampled from the set of all possible features, with a
function �(v) selecting a subset of features of interest. More formally,



8 The random decision forest model

Fig. 2.2: Basic notation. (a) Input data is represented as a collection
of points in the d-dimensional space defined by their feature responses
(2D in this example). (b) A decision tree is a hierarchical structure of
connected nodes. During testing, a split (internal) node applies a test
to the input data v and sends it to the appropriate child. The process
is repeated until a leaf (terminal) node is reached (beige path). (c)
Training a decision tree involves sending all training data {v} into the
tree and optimizing the parameters of the split nodes so as to optimize
a chosen energy function. See text for details.

� : Rd ! Rd

0
, with d0 << d.

2.1.3 Training and testing decision trees

At a high level, the functioning of decision trees can be separated into
an o↵-line phase (training) and an on-line one (testing).

Tree testing (runtime). Given a previously unseen data point v
a decision tree hierarchically applies a number of predefined tests (see
fig. 2.2b). Starting at the root, each split node applies its associated
split function to v. Depending on the result of the binary test the data
is sent to the right or left child.1 This process is repeated until the data
point reaches a leaf node.

1
In this work we focus only on binary decision trees because they are simpler than n-ary

ones. In our experiments we have not found big accuracy di↵erences when using non binary

trees.
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Usually the leaf nodes contain a predictor (e.g. a classifier, or a
regressor) which associates an output (e.g. a class label) to the input
v. In the case of forests many tree predictors are combined together (in
ways which will be described later) to form a single forest prediction.

Tree training (o↵-line). The o↵-line, training phase is in charge
of optimizing parameters of the split functions associated with all the
internal nodes, as well as the leaf predictors.

When discussing tree training it is convenient to think of subsets
of training points associated with di↵erent tree branches. For instance
S
1

denotes the subset of training points reaching node 1 (nodes are
numbered in breadth-first order starting from 0 for the root fig. 2.2c);
and SL

1

, SR
1

denote the subsets going to the left and to the right children
of node 1, respectively. In binary trees the following properties apply
S
j

= SL
j

[ SR
j

, SL
j

\ SR
j

= ;, SL
j

= S
2j+1

and SR
j

= S
2j+2

for each split
node j.

Given a training set S
0

of data points {v} and the associated ground
truth labels the tree parameters are chosen so as to minimize a chosen
energy function (discussed later). Various predefined stopping criteria
(discussed later) are applied to decide when to stop growing the var-
ious tree branches. In our figures the edge thickness is proportional
to the number of training points going through them. The node and
edge colours denote some measure of information, such as purity or
entropy, which depends on the specific task at hand (e.g. classification
or regression).

In the case of a forest with T trees the training process is typically
repeated independently for each tree. Note also that randomness is
only injected during the training process, with testing being completely
deterministic once the trees are fixed.

2.1.4 Entropy and information gain

Before discussing details about tree training it is important to famil-
iarize ourselves with the concepts of entropy and information gain.
These concepts are usually discussed in information theory or prob-
ability courses and are illustrated with toy examples in fig. 2.3 and
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Fig. 2.3: Information gain for discrete, non-parametric distri-
butions. (a) Dataset S before a split. (b) After a horizontal split. (c)
After a vertical split.

fig. 2.4.
Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the
distribution over classes is uniform because we have exactly the same
number of points in each class. If we split the data horizontally (as
shown in fig. 2.3b) this produces two sets of data. Each set is asso-
ciated with a lower entropy (higher information, peakier histograms).
The gain of information achieved by splitting the data is computed as

I = H(S)�
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =
�
P

c2C p(c) log(p(c)). In our example a horizontal split does not sep-
arate the data well, and yields an information gain of I = 0.4. When
using a vertical split (such as the one in fig. 2.3c) we achieve better
class separation, corresponding to lower entropy of the two resulting
sets and a higher information gain (I = 0.69). This simple example
shows how we can use information gain to select the split which pro-
duces the highest information (or confidence) in the final distributions.
This concept is at the basis of the forest training algorithm.

Gabriel Zachmann
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Fig. 2.4: Information gain for continuous, parametric densities.
(a) Dataset S before a split. (b) After a horizontal split. (c) After a
vertical split.

The previous example has focused on discrete, categorical distribu-
tions. But entropy and information gain can also be defined for con-
tinuous distributions. In fact, for instance, the di↵erential entropy of a
d-variate Gaussian density is defined as.

H(S) = 1

2
log
⇣
(2⇡e)d|⇤(S)|

⌘

An example is shown in fig. 2.4. In fig. 2.4a we have a set S of unlabelled
data points. Fitting a Gaussian to the entire initial set S produces
the density shown in blue. Splitting the data horizontally (fig. 2.4b)
produces two largely overlapping Gaussians (in red and green). The
large overlap indicates a suboptimal separation and is associated with
a relatively low information gain (I = 1.08). Splitting the data points
vertically (fig. 2.4c) yields better separated, peakier Gaussians, with a
correspondingly higher value of information gain (I = 2.43). The fact
that the information gain measure can be defined flexibly, for discrete
and continuous distributions, for supervised and unsupervised data is
a useful property that is exploited here to construct a unified forest
framework to address many diverse tasks.
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Fig. 2.5: Split and leaf nodes. (a) Split node (testing). A split node is
associated with a weak learner (or split function, or test function). (b)
Split node (training). Training the parameters ✓

j

of node j involves
optimizing a chosen objective function (maximizing the information
gain I

j

in this example). (c) A leaf node is associated with a predic-
tor model. For example, in classification we may wish to estimate the
conditional p(c|v) with c 2 {c

k

} indicating a class index.

2.2 The decision forest model

A random decision forest is an ensemble of randomly trained decision
trees. The forest model is characterized by a number of components.
For instance, we need to choose a family of split functions (also referred
to as “weak learners” for consistency with the literature). Similarly, we
must select the type of leaf predictor. The randomness model also has
great influence on the workings of the forest. This section discusses
each component one at a time.

2.2.1 The weak learner model

Each split node j is associated with a binary split function

h(v,✓
j

) 2 {0, 1}, (2.1)

with e.g. 0 indicating “false” and 1 indicating “true”. The data arriving
at the split node is sent to its left or right child node according to the
result of the test (see fig.2.5a). The weak learner model is characterized
by its parameters ✓ = (�, , ⌧ ) where  defines the geometric primitive
used to separate the data (e.g. an axis-aligned hyperplane, an oblique
hyperplane [43, 58], a general surface etc.). The parameter vector ⌧
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Fig. 2.6: Example weak learners. (a) Axis-aligned hyperplane. (b)
General oriented hyperplane. (c) Quadratic (conic in 2D). For ease of
visualization here we have v = (x

1

x
2

) 2 R2 and �(v) = (x
1

x
2

1) in
homogeneous coordinates. In general data points v may have a much
higher dimensionality and � still a dimensionality of  2.

captures thresholds for the inequalities used in the binary test. The
filter function � selects some features of choice out of the entire vector
v. All these parameters will be optimized at each split node. Figure 2.6
illustrates a few possible weak learner models, for example:

Linear data separation. In our model linear weak learners are de-
fined as

h(v,✓
j

) = [⌧
1

> �(v) · > ⌧
2

] , (2.2)

where [.] is the indicator function2. For instance, in the 2D example in
fig. 2.6b �(v) = (x

1

x
2

1)>, and  2 R3 denotes a generic line in homo-
geneous coordinates. In (2.2) setting ⌧

1

= 1 or ⌧
2

= �1 corresponds
to using a single-inequality splitting function. Another special case of
this weak learner model is one where the line  is aligned with one of
the axes of the feature space (e.g.  = (1 0  

3

) or  = (0 1  
3

), as
in fig. 2.6a). Axis-aligned weak learners are often used in the boosting
literature and they are referred to as stumps [98].

2
Returns 1 if the argument is true and 0 if it is false.
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Nonlinear data separation. More complex weak learners are ob-
tained by replacing hyperplanes with higher degree of freedom surfaces.
For instance, in 2D one could use conic sections as

h(v,✓
j

) =
h
⌧
1

> �>(v)  �(v) > ⌧
2

i
(2.3)

with  2 R3⇥3 a matrix representing the conic section in homogeneous
coordinates.

Note that low-dimensional weak learners of this type can be used
even for data that originally resides in a very high dimensional space
(d >> 2). In fact, the selector function �

j

can select a di↵erent, small
set of features (e.g. just one or two) and they can be di↵erent for
di↵erent nodes.

As shown later, the number of degrees of freedom of the weak learner
influences heavily the forest generalization properties.

2.2.2 The training objective function

During training, the optimal parameters ✓⇤
j

of the jth split node need
to be computed. This is done here by maximizing an information gain
objective function:

✓⇤
j

= argmax
✓

j

I
j

(2.4)

with

I
j

= I(S
j

,SL
j

,SR
j

,✓
j

). (2.5)

The symbols S
j

,SL
j

,SR
j

denote the sets of training points before and
after the split (see fig. 2.2b and fig. 2.5b). Equation (2.5) is of an
abstract form here. Its precise definition depends on the task at hand
(e.g. supervised or not, continuous or discrete output) as will be shown
in later chapters.

Node optimization. The maximization operation in (2.4) can be
achieved simply as an exhaustive search operation. Often, finding the
optimal values of the ⌧ thresholds may be obtained e�ciently by means
of integral histograms.
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Fig. 2.7: Controlling the amount of randomness and tree cor-
relation. (a) Large values of ⇢ correspond to little randomness and
thus large tree correlation. In this case the forest behaves very much
as if it was made of a single tree. (b) Small values of ⇢ correspond to
large randomness in the training process. Thus the forest component
trees are all very di↵erent from one another.

2.2.3 The randomness model

A key aspect of decision forests is the fact that its component trees are
all randomly di↵erent from one another. This leads to de-correlation
between the individual tree predictions and, in turn, to improved gen-
eralization. Forest randomness also helps achieve high robustness with
respect to noisy data.

Randomness is injected into the trees during the training phase.
Two of the most popular ways of doing so are:

• random training data set sampling [11] (e.g. bagging), and
• randomized node optimization [46].

These two techniques are not mutually exclusive and could be used
together. However, in this paper we focus on the second alternative
which: i) enables us to train each tree on the totality of training data,
and ii) yields margin-maximization properties (details in chapter 3).
On the other hand, bagging yields greater training e�ciency.

Randomized node optimization. If T is the entire set of all possi-
ble parameters ✓ then when training the jth node we only make avail-
able a small subset T

j

⇢ T of such values. Thus under the randomness
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model training a tree is achieved by optimizing each split node j by

✓⇤
j

= arg max
✓

j

2T
j

I
j

. (2.6)

The amount of randomness is controlled by the ratio |T
j

|/|T |. Note that
in some cases we may have |T | = 1. At this point it is convenient to
introduce a parameter ⇢ = |T

j

|. The parameter ⇢ = 1, . . . , |T | controls
the degree of randomness in a forest and (usually) its value is fixed for
all nodes in all trees. For ⇢ = |T | all trees in the forests are identical
to one another and there is no randomness in the system (fig. 2.7a).
Vice-versa, for ⇢ = 1 we get maximum randomness and uncorrelated
trees (fig. 2.7b).

2.2.4 The leaf prediction model

During training, information that is useful for prediction in testing
will be learned for all leaf nodes. In the case of classification each leaf
may store the empirical distribution over the classes associated to the
subset of training data that has reached that leaf. The probabilistic
leaf predictor model for the tth tree is then

p
t

(c|v) (2.7)

with c 2 {c
k

} indexing the class (see fig. 2.5c). In regression instead,
the output is a continuous variable and thus the leaf predictor model
may be a posterior over the desired continuous variable. In more con-
ventional decision trees [12] the leaf output was not probabilistic, but
rather a point estimate, e.g. c⇤ = argmax

c

p
t

(c|v). Forest-based prob-
abilistic regression was introduced in [24] and it will be discussed in
detail in chapter 4.

2.2.5 The ensemble model

In a forest with T trees we have t 2 {1, · · · , T}. All trees are trained
independently (and possibly in parallel). During testing, each test point
v is simultaneously pushed through all trees (starting at the root) until
it reaches the corresponding leaves. Tree testing can also often be done
in parallel, thus achieving high computational e�ciency on modern
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parallel CPU or GPU hardware (see [80] for GPU-based classification).
Combining all tree predictions into a single forest prediction may be
done by a simple averaging operation [11]. For instance, in classification

p(c|v) = 1

T

TX

t=1

p
t

(c|v). (2.8)

Alternatively one could also multiply the tree output together (though
the trees are not statistically independent)

p(c|v) = 1

Z

TY

t=1

p
t

(c|v) (2.9)

with the partition function Z ensuring probabilistic normalization
Figure 2.8 illustrates tree output fusion for a regression example.

Imagine that we have trained a regression forest with T = 4 trees to
predict a “dependent” continuous output y. 3 For a test data point v
we get the corresponding tree posteriors p

t

(y|v), with t = {1, · · · , 4}.
As illustrated some trees produce peakier (more confident) predictions
than others. Both the averaging and the product operations produce
combined distributions (shown in black) which are heavily influenced
by the most confident, most informative trees. Therefore, such simple
operations have the e↵ect of selecting (softly) the more confident trees
out of the forest. This selection is carried out on a leaf-by-leaf level and
the more confident trees may be di↵erent for di↵erent leaves. Averaging
many tree posteriors also has the advantage of reducing the e↵ect of
possibly noisy tree contributions. In general, the product based ensem-
ble model may be less robust to noise. Alternative ensemble models are
possible, where for instance one may choose to select individual trees
in a hard way.

2.2.6 Stopping criteria

Other important choices are to do with when to stop growing individ-
ual tree branches. For instance, it is common to stop the tree when
a maximum number of levels D has been reached. Alternatively, one

3
Probabilistic regression forests will be described in detail in chapter 4.
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Fig. 2.8: Ensemble model. (a) The posteriors of four di↵erent trees
(shown with di↵erent colours). Some correspond to higher confidence
than others. (b) An ensemble posterior p(y|v) obtained by averaging
all tree posteriors. (c) The ensemble posterior p(y|v) obtained as prod-
uct of all tree posteriors. Both in (b) and (c) the ensemble output is
influenced more by the more informative trees.

can impose a minimum information gain. Tree growing may also be
stopped when a node contains less that a defined number of training
points. Avoiding growing full trees has repeatedly been demonstrated
to have positive e↵ects in terms of generalization. In this work we avoid
further post-hoc operations such as tree pruning [42] to keep the train-
ing process as simple as possible.

2.2.7 Summary of key model parameters

In summary, the parameters that most influence the behaviour of a
decision forest are:

• The forest size T ;
• The maximum allowed tree depth D;
• The amount of randomness (controlled by ⇢) and its type;
• The choice of weak learner model;
• The training objective function;
• The choice of features in practical applications.

Those choices directly a↵ect the forest predictive accuracy, the accuracy
of its confidence, its generalization and its computational e�ciency.
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For instance, several papers have pointed out how the testing accu-
racy increases monotonically with the forest size T [24, 83, 102]. It is
also known that very deep trees can lead to overfitting, although using
very large amounts of training data mitigates this problem [82]. In his
seminal work Breiman [11] has also shown the importance of random-
ness and its e↵ect on tree correlation. Chapter 3 will show how the
choice of randomness model directly influences a classification forest’s
generalization. A less studied issue is how the weak learners influence
the forest’s accuracy and its estimated uncertainty. To this end, the
next chapters will show the e↵ect of ⇢ on the forest behaviour with
some simple toy examples and compare the results with existing alter-
natives.

Now we have defined our generic decision forest model. Next we
discuss its specializations for the di↵erent tasks of interest. The ex-
planations will be accompanied by a number of synthetic examples in
the hope of increasing clarity of exposition and helping understand the
forests’ general properties. Real-world applications will also be pre-
sented and discussed.



3
Classification forests

This chapter discusses the most common use of decision forests, i.e.
classification. The goal here is to automatically associate an input data
point v with a discrete class c 2 {c

k

}. Classification forests enjoy a
number of useful properties:

• they naturally handle problems with more than two classes;
• they provide a probabilistic output;
• they generalize well to previously unseen data;
• they are e�cient thanks to their parallelism and reduced set
of tests per data point.

In addition to these known properties this chapter also shows that:

• under certain conditions classification forests exhibit margin-
maximizing behaviour, and

• the quality of the posterior can be controlled via the choice
of the specific weak learner.

We begin with an overview of general classification methods and then
show how to specialize the generic forest model presented in the previ-
ous chapter for the classification task.

20
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3.1 Classification algorithms in the literature

One of the most widely used classifiers is the support vector machine
(SVM) [97] whose popularity is due to the fact that in binary classifica-
tion problems (only two target classes) it guarantees maximum-margin
separation. In turn, this property yields good generalization with rela-
tively little training data.

Another popular technique is boosting [32] which builds strong clas-
sifiers as linear combination of many weak classifiers. A boosted classi-
fier is trained iteratively, where at each iteration the training examples
for which the classifier works less well are “boosted” by increasing their
associated training weight. Cascaded boosting was used in [98] for e�-
cient face detection and localization in images, a task nowadays handled
even by entry-level digital cameras and webcams.

Despite the success of SVMs and boosting, these techniques do not
extend naturally to multiple class problems [20, 94]. In principle, classi-
fication trees and forests work, unmodified with any number of classes.
For instance, they have been tested on ⇠ 20 classes in [83] and ⇠ 30
classes in [82].

Abundant literature has shown the advantage of fusing together
multiple simple learners of di↵erent types [87, 95, 102, 105]. Classifi-
cation forests represent a simple, yet e↵ective way of combining ran-
domly trained classification trees. A thorough comparison of forests
with respect to other binary classification algorithms has been pre-
sented in [15]. In average, classification forests have shown good gen-
eralization, even in problems with high dimensionality. Classification
forests have also been employed successfully in a number of practical
applications [23, 54, 74, 83, 100].

3.2 Specializing the decision forest model for classification

This section specializes the generic model introduced in chapter 2 for
use in classification.

Problem statement. The classification task may be summarized as
follows:
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Fig. 3.1: Classification: training data and tree training. (a) In-
put data points. The ground-truth label of training points is denoted
with di↵erent colours. Grey circles indicate unlabelled, previously un-
seen test data. (b) A binary classification tree. During training a set of
labelled training points {v} is used to optimize the parameters of the
tree. In a classification tree the entropy of the class distributions asso-
ciated with di↵erent nodes decreases (the confidence increases) when
going from the root towards the leaves.

Given a labelled training set learn a general mapping which as-

sociates previously unseen test data with their correct classes.

The need for a general rule that can be applied to “not-yet-
available” test data is typical of inductive tasks.1 In classification the
desired output is of discrete, categorical, unordered type. Consequently,
so is the nature of the training labels. In fig. 3.1a data points are de-
noted with circles, with di↵erent colours indicating di↵erent training
labels. Testing points (not available during training) are indicated in
grey.

More formally, during testing we are given an input test data v
and we wish to infer a class label c such that c 2 C, with C = {c

k

}.
More generally we wish to compute the whole distribution p(c|v). As

1
As opposed to transductive tasks. The distinction will become clearer later.
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usual the input is represented as a multi-dimensional vector of feature
responses v = (x

1

, · · · , x
d

) 2 Rd. Training happens by optimizing an
energy over a training set S

0

of data and associated ground-truth labels.
Next we specify the precise nature of this energy.

The training objective function. Forest training happens by op-
timizing the parameters of the weak learner at each split node j via:

✓⇤
j

= arg max
✓

j

2T
j

I
j

. (3.1)

For classification the objective function I
j

takes the form of a classical
information gain defined for discrete distributions:

I
j

= H(S
j

)�
X

i2{L,R}

|Si

j

|
|S

j

|H(Si

j

)

with i indexing the two child nodes. The entropy for a generic set S of
training points is defined as:

H(S) = �
X

c2C
p(c) log p(c)

where p(c) is calculated as normalized empirical histogram of labels
corresponding to the training points in S. As illustrated in fig. 3.1b
training a classification tree by maximizing the information gain has
the tendency to produce trees where the entropy of the class distri-
butions associated with the nodes decreases (the prediction confidence
increases) when going from the root towards the leaves. In turn, this
yields increasing confidence of prediction.

Although the information gain is a very popular choice of objective
function it is not the only one. However, as shown in later chapters,
using an information-gain-like objective function aids unification of di-
verse tasks under the same forest framework.

Randomness. In (3.1) randomness is injected via randomized node
optimization, with as before ⇢ = |T

j

| indicating the amount of random-
ness. For instance, before starting training node j we can randomly
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Fig. 3.2: Classification forest testing. During testing the same un-
labelled test input data v is pushed through each component tree. At
each internal node a test is applied and the data point sent to the ap-
propriate child. The process is repeated until a leaf is reached. At the
leaf the stored posterior p

t

(c|v) is read o↵. The forest class posterior
p(c|v) is simply the average of all tree posteriors.

sample ⇢ = 1000 parameter values out of possibly billions or even infi-
nite possibilities. It is important to point out that it is not necessary to
have the entire set T pre-computed and stored. We can generate each
random subset T

j

as needed before starting training the corresponding
node.

The leaf and ensemble prediction models. Classification forests
produce probabilistic output as they return not just a single class point
prediction but an entire class distribution. In fact, during testing, each
tree leaf yields the posterior p

t

(c|v) and the forest output is simply:

p(c|v) = 1

T

TX

t

p
t

(c|v).

This is illustrated with a small, three-tree forest in fig. 3.2.
The choices made above in terms of the form of the objective func-

tion and that of the prediction model characterize a classification forest.
In later chapter we will discuss how di↵erent choices lead to di↵erent
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models. Next, we discuss the e↵ect of model parameters and important
properties of classification forests.

3.3 E↵ect of model parameters

This section studies the e↵ect of the forest model parameters on clas-
sification accuracy and generalization. We use many illustrative, syn-
thetic examples designed to bring to life di↵erent properties. Finally,
section 3.6 demonstrates such properties on a real-world, commercial
application.

3.3.1 The e↵ect of the forest size on generalization

Figure 3.3 shows a first synthetic example. Training points belonging
to two di↵erent classes (shown in yellow and red) are randomly drawn
from two well separated Gaussian distributions (fig. 3.3a). The points
are represented as 2-vectors, where each dimension represents a di↵er-
ent feature.

A forest of shallow trees (D = 2) and varying size T is trained
on those points. In this example simple axis-aligned weak learners are
used. In such degenerate trees there is only one split node, the root
itself (fig. 3.3b). The trees are all randomly di↵erent from one another
and each defines a slightly di↵erent partition of the data. In this sim-
ple (linearly separable) example each tree defines a “perfect” partition
since the training data is separated perfectly. However, the partitions
themselves are still randomly di↵erent from one another.

Figure 3.3c shows the testing classification posteriors evaluated for
all non-training points across a square portion of the feature space (the
white testing pixels in fig. 3.3a). In this visualization the colour associ-
ated with each test point is a linear combination of the colours (red and
yellow) corresponding to the two classes; where the mixing weights are
proportional to the posterior itself. Thus, intermediate, mixed colours
(orange in this case) correspond to regions of high uncertainty and low
predictive confidence.

We observe that each single tree produces over-confident predictions
(sharp probabilities in fig. 3.3c

1

). This is undesirable. In fact, intuitively
one would expect the confidence of classification to be reduced for test
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Fig. 3.3: A first classification forest and the e↵ect of forest size
T . (a) Training points belonging to two classes. (b) Di↵erent training
trees produce di↵erent partitions and thus di↵erent leaf predictors. The
colour of tree nodes and edges indicates the class probability of training
points going through them. (c) In testing, increasing the forest size
T produces smoother class posteriors. All experiments were run with
D = 2 and axis-aligned weak learners. See text for details.

data which is “di↵erent” than the training data. The larger the di↵er-
ence, the larger the uncertainty. Thanks to all trees being di↵erent from
one another, increasing the forest size from T = 1 to T = 200 produces
much smoother posteriors (fig. 3.3c

3

). Now we observe higher confi-
dence near the training points and lower confidence away from training
regions of space; an indication of good generalization behaviour.

For few trees (e.g. T = 8) the forest posterior shows clear box-
like artifacts. This is due to the use of an axis-aligned weak learner
model. Such artifacts yield low quality confidence estimates (especially



3.3. E↵ect of model parameters 27

when extrapolating away from training regions) and ultimately imper-
fect generalization. Therefore, in the remainder of this paper we will
always keep an eye on the accuracy of the uncertainty as this is key
for inductive generalization away from (possibly little) training data.
The relationship between quality of uncertainty and maximum-margin
classification will be studied in section 3.4.

3.3.2 Multiple classes and training noise

One major advantage of decision forests over e.g. support vector ma-
chines and boosting is that the same classification model can handle
both binary and multi-class problems. This is illustrated in fig. 3.4 with
both two- and four-class examples, and di↵erent levels of noise in the
training data.

The top row of the figure shows the input training points (two
classes in fig. 3.4a and four classes in figs. 3.4b,c). The middle row
shows corresponding testing class posteriors. the bottom row shows
entropies associated to each pixel. Note how points in between spiral
arms or farther away from training points are (correctly) associated
with larger uncertainty (orange pixels in fig. 3.4a’ and grey-ish ones in
figs. 3.4b’,c’).

In this case we have employed a richer conic section weak learner
model which removes the blocky artifacts observed in the previous ex-
ample and yields smoother posteriors. Notice for instance in fig. 3.4b’
how the curve separating the red and the green spiral arms is nicely
continued away from training points (with increasing uncertainty).

As expected, if the noise in the position of training points increases
(cf fig. 3.4b and 3.4 c) then training points for di↵erent classes are more
intermingled with one another. This yields a larger overall uncertainty
in the testing posterior (captured by less saturated colours in fig. 3.4c’).
Next we delve further into the issue of training noise and mixed or
“sloppy” training data.

3.3.3 “Sloppy” labels and the e↵ect of the tree depth

The experiment in fig. 3.5 illustrates the behaviour of classification
forests on a four-class training set where there is both mixing of la-
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Fig. 3.4: The e↵ect of multiple classes and noise in training data. (a,b,c)

Training points for three di↵erent experiments: 2-class spiral, 4-class spiral and
another 4-class spiral with noisier point positions, respectively. (a’,b’,c’) Corre-
sponding testing posteriors. (a”,b”,c”) Corresponding entropy images (brighter
for larger entropy). The classification forest can handle both binary as well as multi-
class problems. With larger training noise the classification uncertainty increases
(less saturated colours in c’ and less sharp entropy in c”). All experiments in this
figure were run with T = 200, D = 6, and a conic-section weak-learner model.

bels (in feature space) and large gaps. Here three di↵erent forests have
been trained with the same number of trees T = 200 and varying max-
imum depth D. We observe that as the tree depth increases the overall
prediction confidence also increases. Furthermore, in large gaps (e.g.
between red and blue regions), the optimal separating surface tends to
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Fig. 3.5: The e↵ect of tree depth. A four-class problem with both
mixing of training labels and large gaps. (a) Training points. (b,c,d)
Testing posteriors for di↵erent tree depths. All experiments were run
with T = 200 and a conic weak-learner model. The tree depth is a
crucial parameter in avoiding under- or over-fitting.

be placed roughly in the middle of the gap.2

Finally, we notice that a large value of D (D = 15 in the exam-
ple) tends to produce overfitting, i.e. the posterior tends to split o↵
isolated clusters of noisy training data (denoted with white circles in
the figure). In fact, the maximum tree depth parameter D controls
the amount of overfitting. By the same token, too shallow trees pro-
duce washed-out, low-confidence posteriors. Thus, while using multiple

2
This e↵ect will be analyzed further in the next section.
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trees alleviates the overfitting problem of individual trees, it does not
cure it completely. In practice one has to be very careful to select the
most appropriate value of D as its optimal value is a function of the
problem complexity.

3.3.4 The e↵ect of the weak learner

Another important issue that has perhaps been a little overlooked in
the literature is the e↵ect of a particular choice of weak learner model
on the forest behaviour.

Figure 3.6 illustrates this point. We are given a single set of training
points arranged in four spirals, one for each class. Six di↵erent forests
have been trained on the same training data, for 2 di↵erent values
of tree depth and 3 di↵erent weak learners. The 2 ⇥ 3 arrangement
of images shows the output test posterior for varying D (in di↵erent
rows) and varying weak learner model (in di↵erent columns). All ex-
periments are conducted with a very large number of trees (T = 400)
to remove the e↵ect of forest size and reach close to the maximum
possible smoothness under the model.

This experiment confirms again that increasing D increases the con-
fidence of the output (for fixed weak learner). This is illustrated by
the more intense colours going from top row to the bottom row. Fur-
thermore we observe that the choice of weak learner model has a large
impact on the test posterior and the quality of its confidence. The axis-
aligned model may still separate the training data well, but produces
large blocky artifacts in the test regions. This tends to indicate bad
generalization. The oriented line model [43, 58] is a clear improvement,
and better still is the non-linear model as it extrapolates the shape of
the spiral arms in a more naturally curved manner.

On the flip side, of course, we should also consider the fact that axis-
aligned tests are extremely e�cient to compute. So the choice of the
specific weak learner has to be based on considerations of both accuracy
and e�ciency and depends on the specific application at hand. Next we
study the e↵ect of randomness by running exactly the same experiment
but with a much larger amount of training randomness.
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Fig. 3.6: The e↵ect of weak learner model. The same set of 4-class
training data is used to train 6 di↵erent forests, for 2 di↵erent values
of D and 3 di↵erent weak learners. For fixed weak learner deeper trees
produce larger confidence. For constant D non-linear weak learners
produce the best results. In fact, an axis-aligned weak learner model
produces blocky artifacts while the curvilinear model tends to extrap-
olate the shape of the spiral arms in a more natural way. Training has
been achieved with ⇢ = 500 for all split nodes. The forest size is kept
fixed at T = 400.

3.3.5 The e↵ect of randomness

Figure 3.7 shows the same experiment as in fig. 3.6 with the only dif-
ference that now ⇢ = 5 as opposed to ⇢ = 500. Thus, much fewer pa-
rameter values were made available to each node during training. This
increases the randomness of each tree and reduces their correlation.

Larger randomness helps reduce a little the blocky artifacts of the
axis-aligned weak-learner as it produces more rounded decision bound-
aries (first column in fig. 3.7). Furthermore, larger randomness yields a
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Fig. 3.7: The e↵ect of randomness. The same set of 4-class training
data is used to train 6 di↵erent forests, for 2 di↵erent values of D

and 3 di↵erent weak learners. This experiment is identical to that in
fig. 3.6 except that we have used much more training randomness. In
fact ⇢ = 5 for all split nodes. The forest size is kept fixed at T = 400.
More randomness reduces the artifacts of the axis-aligned weak learner
a little, as well as reducing overall prediction confidence too. See text
for details.

much lower overall confidence, especially noticeable in shallower trees
(washed out colours in the top row).

A disadvantage of the more complex weak learners is that they are
associated to a larger parameters space. Thus finding discriminative
sets of parameter values may be time consuming. However, in this toy
example the more complex conic section learner model works well for
deeper trees (D = 13) even for small values of ⇢ (large randomness).
The results reported here are only indicative. In fact, which specific
weak learner to use depends on considerations of e�ciency as well as
accuracy and it is application dependent. Many more examples, ani-
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mations and demo videos are available at [1].
Next, we move on to show further properties of classification forests.

Specifically, we demonstrate how under certain conditions forests ex-
hibit margin-maximizing capabilities.

3.4 Maximum-margin properties

The hallmark of support vector machines is their ability to separate
data belonging to di↵erent classes via a margin-maximizing surface.
This, in turn, yields good generalization even with relatively little train-
ing data. This section shows how this important property is replicated
in random classification forests and under which conditions. Margin
maximizing properties of random forests were discussed in [52]. Here
we show a di↵erent, simpler formulation, analyze the conditions that
lead to margin maximization, and discuss how this property is a↵ected
by di↵erent choices of model parameters.

Imagine we are given a linearly separable 2-class training data
set such as that shown in fig. 3.8a. For simplicity here we assume
d = 2 (only two features describe each data point), an axis-aligned
weak learner model and D = 2 (trees are simple binary stumps). As
usual randomness is injected via randomized node optimization (sec-
tion 2.2.3).

When training the root node of the first tree, if we use enough
candidate features/parameters (i.e. |T

0

| is large) the selected separating
line tends to be placed somewhere within the gap (see fig. 3.8a) so as to
separate the training data perfectly (maximum information gain). Any
position within the gap is associated with exactly the same, maximum
information gain. Thus, a collection of randomly trained trees produces
a set of separating lines randomly placed within the gap (an e↵ect
already observed in fig. 3.3b).

If the candidate separating lines are sampled from a uniform distri-
bution (as is usually the case) then this would yield forest class poste-
riors that vary within the gap as a linear ramp, as shown in fig. 3.8b,c.
If we are interested in a hard separation then the optimal separating
surface (assuming equal loss) is such that the posteriors for the two
classes are identical. This corresponds to a line placed right in the mid-
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Fig. 3.8: Forest’s maximum-margin properties. (a) Input 2-class
training points. They are separated by a gap of dimension�. (b) Forest
posterior. Note that all of the uncertainty band resides within the gap.
(c) Cross-sections of class posteriors along the horizontal, white dashed
line in (b). Within the gap the class posteriors are linear functions of
x
1

. Since they have to sum to 1 they meet right in the middle of the
gap. In these experiments we use ⇢ = 500, D = 2, T = 500 and axis
aligned weak learners.

dle of the gap, i.e. the maximum-margin solution. Next, we describe
the same concepts more formally.

We are given the two-class training points in fig. 3.8a. In this sim-
ple example the training data is not only linearly separable, but it is
perfectly separable via vertical stumps on x

1

. So we constrain our weak
learners to be vertical lines only, i.e.

h(v,✓
j

) = [�(v) > ⌧ ] with �(v) = x
1

.
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Under these conditions we can define the gap � as � = x00
1

�x0
1

, with x0
1

and x00
1

corresponding to the first feature of the two “support vectors”3,
i.e. the yellow point with largest x

1

and the red point with smallest x
1

.
For a fixed x

2

the classification forest produces the posterior p(c|x
1

)
for the two classes c

1

and c
2

. The optimal separating line (vertical) is
at position ⌧⇤ such that

⌧⇤ = argmin
⌧

|p(c = c
1

|x
1

= ⌧)� p(c = c
2

|x
1

= ⌧)|.

We make the additional assumption that when training a node its
available test parameters (in this case just ⌧) are sampled from a uni-
form distribution, then the forest posteriors behave linearly within the
gap region, i.e.

lim
⇢!|T |,T!1

p(c = c
1

|x
1

) =
x
1

� x0
1

�
8x

1

2 [x0
1

, x00
1

].

(see fig. 3.8b,c). Consequently, since
P

c2{c1,c2} p(c|x1) = 1 we have

lim
⇢!|T |,T!1

⌧⇤ = x0
1

+�/2.

which shows that the optimal separation is placed right in the middle
of the gap. This demonstrates the forest’s margin-maximization prop-
erties for this simple example.

Note that each individual tree is not guaranteed to produce
maximum-margin separation; it is instead the combination of multi-
ple trees that at the limit T ! 1 produces the desired max-margin
behaviour. In practice it su�ces to have T and ⇢ “large enough”. Fur-
thermore, as observed earlier, for perfectly separable data each tree
produces over-confident posteriors. Once again, their combination in a
forest yields fully probabilistic and smooth posteriors (in contrast to
SVM).

The simple mathematical derivation above provides us with some
intuition on how model choices such as the amount of randomness or
the type of weak learner a↵ect the placement of the forest’s separating
surface. The next sections should clarify these concepts further.

3
analogous to support vectors in SVM.
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3.4.1 The e↵ect of randomness on optimal separation

The experiment in fig. 3.8 has used a large value of ⇢ (⇢ ! |T |, little
randomness, large tree correlation) to make sure that each tree decision
boundary fell within the gap. When using more randomness (smaller ⇢)
then the individual trees are not guaranteed to split the data perfectly
and thus they may yield a sub-optimal information gain. In turn, this
yields a lower confidence in the posterior. Now, the locus of points where
p(c = c

1

|x
1

) = p(c = c
2

|x
1

) is no longer placed right in the middle of the
gap. This is shown in the experiment in fig. 3.9 where we can observe
that by increasing the randomness (decreasing ⇢) we obtain smoother
and more spread-out posteriors. The optimal separating surface is less
sharply defined. The e↵ect of individual training points is weaker as
compared to the entire mass of training data; and in fact, it is no
longer possible to identify individual support vectors. This may be
advantageous in the presence of “sloppy” or inaccurate training data.

The role of the parameter ⇢ is very similar to that of “slack” vari-
ables in SVM [97]. In SVM the slack variables control the influence of
individual support vectors versus the rest of training data. Appropriate
values of slack variables yield higher robustness with respect to training
noise.

3.4.2 Influence of the weak learner model

Figure 3.10 shows how more complex weak learners a↵ects the shape
and orientation of the optimal, hard classification surface (as well as the
uncertain region, in orange). Once again, the position and orientation
of the separation boundary is more or less sensitive to individual train-
ing points depending on the value of ⇢. Little randomness produces a
behaviour closer to that of support vector machines.

In classification forests, using linear weak-learners still produces
(in general) globally non-linear classification (see the black curves in
fig. 3.9c and fig. 3.10b). This is due to the fact that multiple simple
linear split nodes are organized in a hierarchical fashion.
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Fig. 3.9: The e↵ect of randomness on the forest margin. (a)
Forest posterior for ⇢ = 50 (small randomness). (b) Forest posterior
for ⇢ = 5. (c) Forest posterior for ⇢ = 2 (highest randomness). These
experiments have used D = 2, T = 400 and axis-aligned weak learners.
The bottom row shows 1D posteriors computed along the white dashed
line. Increasing randomness produces less well defined separating sur-
faces. The optimal separating surface, i.e. the loci of points where the
class posteriors are equal (shown in black) moves towards the left of
the margin-maximizing line (shown in green in all three experiments).
As randomness increases individual training points have less influence
on the separating surface.

3.4.3 Max-margin in multiple classes

Since classification forests can naturally apply to more than 2 classes
how does this a↵ect their maximum-margin properties? We illustrate
this point with a multi-class synthetic example. In fig. 3.11a we have
a linearly separable four-class training set. On it we have trained two
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Fig. 3.10: The e↵ect of the weak learner on forest margin. (a)
Forest posterior for axis aligned weak learners. (b) Forest posterior for
oriented line weak learners. (c) Forest posterior for conic section weak
learners. In these experiments we have used ⇢ = 50, D = 2, T = 500.
The choice of weak learner a↵ects the optimal, hard separating surface
(in black). Individual training points influence the surface di↵erently
depending on the amount of randomness in the forest.

forests with |T
j

| = 50, D = 3, T = 400. The only di↵erence between
the two forests is the fact that the first one uses an oriented line weak
learner and the second a conic weak learner. Figures 3.11b,c show the
corresponding testing posteriors. As usual grey pixels indicate regions
of higher posterior entropy and lower confidence. They roughly delin-
eate the four optimal hard classification regions. Note that in both
cases their boundaries are roughly placed half-way between neighbour-
ing classes. As in the 2-class case the influence of individual training
points is dictated by the randomness parameter ⇢.

Finally, when comparing fig. 3.11c and fig. 3.11b we notice that for
conic learners the shape of the uncertainty region evolves in a curved
fashion when moving away from training data.

3.4.4 The e↵ect of the randomness model

This section shows a direct comparison between the randomized node
optimization and the bagging model.

In bagging randomness is injected by randomly sampling di↵erent
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Fig. 3.11: Forest’s max-margin properties for multiple classes.
(a) Input four-class training points. (b) Forest posterior for oriented
line weak learners. (c) Forest posterior for conic section weak learners.
Regions of high entropy are shown as grey bands and correspond to loci
of optimal separation. In these experiments we have used the following
parameter settings ⇢ = 50, D = 3, T = 400.

subsets of training data. So, each tree sees a di↵erent training subset.
Its node parameters are then fully optimized on this set. This means
that specific “support vectors” may not be available in some of the
trees. The posterior associated with those trees will then tend to move
the optimal separating surface away from the maximum-margin one.

This is illustrated in fig. 3.12 where we have trained two forests with
⇢ = 500, D = 2, T = 400 and two di↵erent randomness models. The
forest tested in fig. 3.12a uses randomized node optimization (RNO).
The one in fig. 3.12b uses bagging (randomly selecting 50% training
data with replacement) on exactly the same training data. In bagging,
when training a node, there may be a whole range of values of a cer-
tain parameter which yield maximum information gain (e.g. the range
[⌧ 0
1

, ⌧ 00
1

] for the threshold ⌧
1

). In such a case we could decide to always
select one value out of the range (e.g. ⌧ 0

1

). But this would probably
be an unfair comparison. Thus we chose to randomly select a parame-
ter value uniformly within that range. In e↵ect here we are combining
bagging and random node optimization together. The e↵ect is shown
in fig. 3.12b. In both cases we have used a large value of ⇢ to make
sure that each tree achieves decent optimality in parameter selection.
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Fig. 3.12: Max-margin: bagging v randomized node optimiza-
tion. (a) Posterior for forest trained with randomized node optimiza-
tion. (b) Posterior for forest trained with bagging. In bagging, for each
tree we use 50% random selection of training data with replacement.
Loci of optimal separation are shown as black lines. In these experi-
ments we use ⇢ = 500, D = 2, T = 400 and axis-aligned weak learners.
Areas of high entropy have been shown strongly grey to highlight the
separating surfaces.

We observe that the introduction of training set randomization leads
to smoother posteriors whose optimal boundary (shown as a vertical
black line) does not coincide with the maximum margin (green, solid
line). Of course this behaviour is controlled by how much (training set)
randomness we inject in the system. If we were to take all training data
then we would reproduce a max-margin behaviour (but it would not
be bagging). One advantage of bagging is increased training speed (due
to reduced training set size). More experiments and comparisons are
available in [1]. In the rest of the paper we use the RNO randomness
model because it allows us to use all available training data and en-
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ables us to control the maximum-margin behaviour simply, by means
of changing ⇢.

3.5 Comparisons with alternative algorithms

This section compares classification forests to existing state-of-the art
algorithms.

3.5.1 Comparison with boosting

Figure 3.13 shows a comparison between classification forests and Mod-
estBoost on two synthetic experiments.4 Here, for both algorithm we
use shallow tree stumps (D = 2) with axis-aligned split functions as
this is what is conventionally used in boosting [99].

The first column presents the soft testing posteriors of the classifica-
tion forest. The third column presents a visualization of the real-valued
output of the boosted strong classifier, while the second column shows
the more conventional, thresholded boosting output. The figure illus-
trates the superiority of the forest in terms of the additional uncertainty
encoded in its posterior. Although both algorithms separate the train-
ing data perfectly, the boosting binary output is overly confident, thus
potentially causing incorrect classification of previously unseen testing
points. Using the real valued boosted output (third column) as a proxy
for uncertainty does not seem to produce intuitively meaningful confi-
dence results in these experiments. In fact, in some cases (experiment
1) there is not much di↵erence between the thresholded and real-valued
boosting outputs. This is due to the fact that all boosting’s weak learn-
ers are identical to one another, in this case. The training procedure
of the boosting algorithm tested here does not encourage diversity of
weak learners in cases where the data can be easily separated by a single
stump. Alternative boosting technique may produce better behaviour.

4
Boosting results are obtained via the publically available Matlab toolbox in

http://graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox
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Fig. 3.13: Comparison between classification forests and boost-
ing on two examples. Forests produce a smooth, probabilistic output.
High uncertainty is associated with regions between di↵erent classes or
away from training data. boosting produces a hard output. Interpreting
the output of a boosted strong classifier as real valued does not seem to
produce intuitively meaningful confidence. The forest parameters are:
D = 2, T = 200, and we use axis-aligned weak learners. Boosting was
also run with 200 axis-aligned stumps and the remaining parameters
optimized to achieve best results.

3.5.2 Comparison with support vector machines

Figure 3.14 illustrates a comparison between classification forests and
conventional support vector machines5 on three di↵erent four-class
training sets. In all examples the four classes are nicely separable

5
SVM experiments are obtained via the publically available code in http://asi.insa-

rouen.fr/enseignants/ arakotom/toolbox/index.html. For multi-class experiments we run

one-v-all SVM.
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Fig. 3.14: Comparison between classification forests and sup-
port vector machines. All forest experiments were run with D = 3,
T = 200 and conic weak learner. The SVM parameters were optimized
to achieve best results.

and both forests and SVMs achieve good separation results. However,
forests also produce uncertainty information. Probabilistic SVM coun-
terparts such as the relevance vector machine [93] do produce confi-
dence output but at the expense of further computation.

The role of good confidence estimation is particularly evident in
fig. 3.14b where we can see how the uncertainty increases as we move
away from the training data. The exact shape of the confidence region
is dictated strongly by the choice of the weak learner model (conic
section in this case), and a simple axis-aligned weak learner would
produce inferior results. In contrast, the SVM classifier assigns a hard
output class value to each pixel, with equal confidence.

Unlike forests, SVMs were born as two-class classifiers, although
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Fig. 3.15: Classification forests in Microsoft Kinect for XBox
360. (a) An input frame as acquired by the Kinect depth camera.
(b) Synthetically generated ground-truth labeling of 31 di↵erent body
parts [82]. (c) One of the many features of a “reference” point p. Given
p computing the feature amounts to looking up the depth at a “probe”
position p+ r and comparing it with the depth of p.

recently they have been adapted to work with multiple classes. Fig-
ure 3.14c shows how the sequentiality of the one-v-all SVM approach
may lead to asymmetries which are not really justified by the training
data.

3.6 Human body tracking in Microsoft Kinect for XBox 360

This section describes the application of classification forests for the
real-time tracking of humans, as employed in the Microsoft Kinect gam-
ing system [100]. Here we present a summary of the algorithm in [82]
and show how the forest employed within is readily interpreted as an
instantiation of our generic decision forest model.

Given a depth image such as the one shown in fig. 3.15a
we wish to say which body part each pixel belongs to.
This is a typical job for a classification forest. In this ap-
plication there are thirtyone di↵erent body part classes:
c 2 {left hand, right hand, head, l. shoulder, r. shoulder, · · · }.
The unit of computation is a single pixel in position p 2 R2 and with
associated feature vector v(p) 2 Rd.

During testing, given a pixel p in a previously unseen test image we
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Fig. 3.16: Classification forests in Kinect for XBox 360. (a) An
input depth frame with background removed. (b) The body part clas-
sification posterior. Di↵erent colours corresponding to di↵erent body
parts, out of 31 di↵erent classes.

wish to estimate the posterior p(c|v). Visual features are simple depth
comparisons between pairs of pixel locations. So, for pixel p its feature
vector v = (x

1

, . . . , x
i

, . . . , x
d

) 2 Rd is a collection of depth di↵erences:

x
i

= J(p)� J

✓
p+

r
i

J(p)

◆
(3.2)

where J(.) denotes a pixel depth in mm (distance from camera plane).
The 2D vector r

i

denotes a displacement from the reference point p
(see fig. 3.15c). Since for each pixel we can look around at an infinite
number of possible displacements (8 r 2 R2) we have d = 1.

During training we are given a large number of pixel-wise labelled
training image pairs as in fig 3.15b. Training happens by maximizing
the information gain for discrete distributions (3.1). For a split node j

its parameters are

✓
j

= (r
j

, ⌧
j

)

with r
j

a randomly chosen displacement. The quantity ⌧
j

is a learned
scalar threshold. If d = 1 then also the whole set of possible split
parameters has infinite cardinality, i.e. |T | = 1.

An axis-aligned weak learner model is used here with the node split
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function as follows

h(v,✓
j

) = [�(v, r
j

) > ⌧
j

] .

As usual, the selector function � takes the entire feature vector v and
returns the single feature response (3.2) corresponding to the chosen
displacement r

j

. In practice, when training a split node j we first ran-
domly generate a set of parameters T

j

and then maximize the infor-
mation gain by exhaustive search. Therefore we never need to compute
the entire infinite set T .

Now we have defined all model parameters for the specific applica-
tion at hand. Some example results are shown in fig. 3.16; with many
more shown in the original paper [82]. Now that we know how this ap-
plication relates to the more abstract description of the classification
forest model it would be interesting to see how the results change, e.g.
when changing the weak learner model, or the amount of randomness
etc. However, this investigation is beyond the scope of this paper.

Moving on from classification, the next chapter addresses a closely
related problem, that of probabilistic, non-linear regression. Interest-
ingly, regression forests have very recently been used for skeletal joint
prediction in Kinect images [37].



4
Regression forests

This chapter discusses the use of random decision forests for the esti-
mation of continuous variables.

Regression forests are used for the non-linear regression of depen-
dent variables given independent input. Both input and output may
be multi-dimensional. The output can be a point estimate or a full
probability density function.

Regression forests are less popular than their classification counter-
part. The main di↵erence is that the output label to be associated with
an input data is continuous. Therefore, the training labels are continu-
ous. Consequently the objective function has to be adapted appropri-
ately. Regression forests share many of the advantages of classification
forests such as e�ciency and flexibility.

As with the other chapters we start with a brief literature survey
of linear and non-linear regression techniques, then we describe the
regression forest model and finally we demonstrate its properties with
examples and comparisons.

47
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48 Regression forests

4.1 Nonlinear regression in the literature

Given a set of noisy input data and associated continuous measure-
ments, least squares techniques [7] (closely related to principal compo-
nent analysis [48]) can be used to fit a linear regressor which minimizes
some error computed over all training points. Under this model, given
a new test input the corresponding output can be e�ciently estimated.
The limitation of this model is in its linear nature, when we know
that most natural phenomena have non-linear behaviour [79]. Another
well known issue with linear regression techniques is their sensitivity
to input noise.

In geometric computer vision, a popular technique for achieving
robust regression via randomization is RANSAC [30, 41]. For instance
the estimation of multi-view epipolar geometry and image registration
transformations can be achieved in this way [41]. One disadvantage of
conventional RANSAC is that its output is non probabilistic. As will
be clearer later, regression forests may be thought of as an extension
of RANSAC, with little RANSAC regressors for each leaf node.

In machine learning, the success of support vector classifica-
tion has encouraged the development of support vector regression
(SVR [51, 86]). Similar to RANSAC, SVR can deal successfully with
large amounts of noise. In Bayesian machine learning Gaussian pro-
cesses [5, 73] have enjoyed much success due to their simplicity, elegance
and their rigorous uncertainty modeling.

Although (non-probabilistic) regression forests were described
in [11] they have only recently started to be used in computer vision
and medical image analysis [24, 29, 37, 49, 59]. Next, we discuss how to
specialize the generic forest model described in chapter 2 to do prob-
abilistic, nonlinear regression e�ciently. Many synthetic experiments,
commercial applications and comparisons with existing algorithms will
validate the regression forest model.

4.2 Specializing the decision forest model for regression

The regression task can be summarized as follows:
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Fig. 4.1:Regression: training data and tree training. (a) Training
data points are shown as dark circles. The associated ground truth
label is denoted by their position along the y coordinate. The input
feature space here is one-dimensional in this example (v = (x)). x is
the independent input and y is the dependent variable. A previously
unseen test input is indicated with a light gray circle. (b) A binary
regression tree. During training a set of labelled training points {v}
is used to optimize the parameters of the tree. In a regression tree
the entropy of the continuous densities associated with di↵erent nodes
decreases (their confidence increases) when going from the root towards
the leaves.

Given a labelled training set learn a general mapping which asso-

ciates previously unseen independent test data with their correct

continuous prediction.

Like classification the regression task is inductive, with the main
di↵erence being the continuous nature of the output. Figure 4.1a pro-
vides an illustrative example of training data and associated continuous
ground-truth labels. A previously unseen test input (unavailable during
training) is shown as a light grey circle on the x axis.

Formally, given a multi-variate input v we wish to associate a con-
tinuous multi-variate label y 2 Y ✓ Rn. More generally, we wish
to estimate the probability density function p(y|v). As usual the
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Fig. 4.2: Example predictor models. Di↵erent possible predictor
models. (a) Constant. (b) Polynomial and linear. (c) Probabilistic-
linear. The conditional distribution p(y|x) is returned in the latter.

input is represented as a multi-dimensional feature response vector
v = (x

1

, · · · , x
d

) 2 Rd.

Why regression forests? A regression forest is a collection of ran-
domly trained regression trees (fig. 4.3). Just like in classification it
can be shown that a forest generalizes better than a single over-trained
tree.

A regression tree (fig. 4.1b) splits a complex nonlinear regression
problem into a set of smaller problems which can be more easily handled
by simpler models (e.g. linear ones; see also fig.4.2). Next we specify
the precise nature of each model component.

The prediction model. The first job of a decision tree is to decide
which branch to direct the incoming data to. But when the data reaches
a terminal node then that leaf needs to make a prediction.

The actual form of the prediction depends on the prediction model.
In classification we have used the pre-stored empirical class posterior as
model. In regression forests we have a few alternatives, as illustrated in
fig. 4.2. For instance we could use a polynomial function of a subspace
of the input v. In the low dimensional example in the figure a generic
polynomial model corresponds to y(x) =

P
n

i=0

w
i

xi. This simple model
also captures the linear and constant models (see fig. 4.2a,b).

In this paper we are interested in output confidence as well as its
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Fig. 4.3: Regression forest: the ensemble model. The regression
forest posterior is simply the average of all individual tree posteriors
p(y|v) = 1

T

P
T

t=1

p
t

(y|v).

actual value. Thus for prediction we can use a probability density func-
tion over the continuous variable y. So, given the tth tree in a forest
and an input point v, the associated leaf output takes the form p

t

(y|v).
In the low-dimensional example in fig. 4.2c we assume an underlying
linear model of type y = w

0

+w
1

x and each leaf yields the conditional
p(y|x).

The ensemble model. Just like in classification, the forest output
is the average of all tree outputs (fig. 4.3):

p(y|v) = 1

T

TX

t

p
t

(y|v)

A practical justification for this model was presented in section 2.2.5.

Randomness model. Like in classification here we use a random-
ized node optimization model. Therefore, the amount of randomness
is controlled during training by the parameter ⇢ = |T

j

|. The random
subsets of split parameters T

j

can be generated on the fly when training
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the jth node.

The training objective function. Forest training happens by op-
timizing an energy over a training set S

0

of data and associated con-
tinuous labels. Training a split node j happens by optimizing the pa-
rameters of its weak learner:

✓⇤
j

= arg max
✓

j

2T
j

I
j

. (4.1)

Now, the main di↵erence between classification and regression forest is
in the form of the objective function I

j

.
In [12] regression trees are trained by minimizing a least-squares

or least-absolute error function. Here, for consistency with our general
forest model we employ a continuous formulation of information gain.
Appendix A illustrates how information theoretical derivations lead to
the following definition of information gain:

I
j

=
X

v2S
j

log (|⇤y(v)|)�
X

i2{L,R}

0

B@
X

v2Si
j

log (|⇤y(v)|)

1

CA (4.2)

with ⇤y the conditional covariance matrix computed from probabilis-
tic linear fitting (see also fig. 4.4). S

j

indicates the set of training
data arriving at node j, and SL

j

, SR
j

the left and right split sets. Note
that (4.2) is valid only for the case of a probabilistic-linear prediction
model (fig. 4.2).

By comparison, the error or fit objective function used in [12] (for
single-variate output y) is:

X

v2S
j

�
y � y

j

�
2 �

X

i2{L,R}

0

B@
X

v2Si
j

�
y � y

j

�
2

1

CA , (4.3)

with y
j

indicating the mean value of y for all training points reach-
ing the jth node. Note that (4.3) is closely related to (4.2) but limited
to constant predictors. Also, in [12] the author is only interested in a
point estimate of y rather than a fully probabilistic output. Further-
more, using an information theoretic formulation allows us to unify

Gabriel Zachmann
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Fig. 4.4: Probabilistic line fitting. Given a set of training points
we can fit a line l to them, e.g. by least squares or RANSAC. In this
example l 2 R2. Matrix perturbation theory (see appendix A) enables
us to estimate a probabilistic model of l from where we can derive
p(y|x) (modelled here as a Gaussian). Training a regression tree involves
minimizing the uncertainty of the prediction p(y|x) over the training
set. Therefore, the training objective is a function of �2

y

evaluated at
the training points.

di↵erent tasks within the same, general probabilistic forest model. To
fully characterize our regression forest model we still need to decide
how to split the data arriving at an internal node.

The weak learner model. As usual, the data arriving at a split
node j is separated into its left or right children (see fig. 4.1b) according
to a binary weak learner stored in an internal node, of the following
general form:

h(v,✓
j

) 2 {0, 1}, (4.4)

with 0 indicating “false” (go left) and 1 indicating “true” (go right).
Like in classification here we consider three types of weak learners:
(i) axis-aligned, ii) oriented hyperplane, (iii) quadratic (see fig. 4.5 for
an illustration on 2D!1D regression). Many additional weak learner
models may be considered.

Next, a number of experiments will illustrate how regression forests
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Fig. 4.5: Example weak learners. The (x
1

, x
2

) plane represents the
d�dimensional input domain (independent). The y space represents the
n�dimensional continuous output (dependent). The example types of
weak learner are like in classification (a) Axis-aligned hyperplane. (b)
General oriented hyperplane. (c) Quadratic (corresponding to a conic
section in 2D). Further weak learners may be considered.

work in practice and the e↵ect of di↵erent model choices on their out-
put.

4.3 E↵ect of model parameters

This section discusses the e↵ect of model choices such as: tree depth,
forest size and weak learner model on the forest behaviour.

4.3.1 The e↵ect of the forest size

Figure 4.6 shows a first, simple example. We are given the training
points shown in fig. 4.6a. We can think of those as being randomly
drawn from two segments with di↵erent orientations. Each point has a
1-dimensional input feature x and a corresponding scalar, continuous
output label y.

A forest of shallow trees (D = 2) and varying size T is trained on
those points. We use axis-aligned weak learners, and probabilistic-linear
predictor models. The trained trees (fig. 4.6b) are all slightly di↵erent
from each other as they produce di↵erent leaf models (fig. 4.6b). During
training, as expected each leaf model produces smaller uncertainty near
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Fig. 4.6: A first regression forest and the e↵ect of its size T .
(a) Training points. (b) Two di↵erent shallow trained trees (D = 2)
split the data into two portions and produce di↵erent piece-wise
probabilistic-linear predictions. (c) Testing posteriors evaluated for all
values of x and increasing number of trees. The green curve denotes
the conditional mean E [y|x] =

R
y · p(y|x) dy. The mean curve corre-

sponding to a single tree (T = 1) shows a sharp change of direction
in the gap. Increasing the forest size produces smoother class poste-
riors p(y|x) and smoother mean curves in the interpolated region. All
examples have been run with D = 2, axis-aligned weak learners and
probabilistic-linear prediction models.

the training points and larger away from them. In the gap the actual
split happens in di↵erent places along the x axis for di↵erent trees.

The bottom row (fig. 4.6c) shows the regression posteriors evaluated
for all positions along the x axis. For each x position we plot the entire
distribution p(y|x), where darker red indicates larger values of the pos-
terior. Thus, very compact, dark pixels correspond to high prediction
confidence.
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Note how a single tree produces a sharp change in direction of the
mean prediction y(x) = E [y|x] =

R
y ·p(y|x) dy (shown in green) in the

large gap between the training clusters. But as the number of trees in-
creases both the prediction mean and its uncertainty become smoother.
Thus smoothness of the interpolation is controlled here simply by the
parameter T . We can also observe how the uncertainty increases as we
move away from the training data (both in the interpolated gap and in
the extrapolated regions).

4.3.2 The e↵ect of the tree depth

Figure 4.7 shows the e↵ect of varying the maximum allowed tree depth
D on the same training set as in fig.4.6. A regression forest with D = 1
(top row in figure) corresponds to conventional linear regression (with
additional confidence estimation). In this case the training data is more
complex than a single line and thus such a degenerate forest under-fits.
In contrast, a forest of depth D = 5 (bottom row in figure) yields over-
fitting. This is highlighted in the figure by the high-frequency variations
in the prediction confidence and the mean y(x).

4.3.3 Spatial smoothness and testing uncertainty

Figure 4.8 shows four more experiments. The mean prediction curve
y(x) is plotted in green and the mode ŷ(x) = argmax

y

p(y|x) is
shown in grey. These experiments highlight the smooth interpolating
behaviour of the mean prediction in contrast to the more jagged nature
of the mode.1 The uncertainty increases away from training data. Fi-
nally, notice how in the gaps the regression forest can correctly capture
multi-modal posteriors. This is highlighted by the di↵erence between
mode and mean predictions. In all experiments we used a probabilistic-
linear predictor with axis-aligned weak learner, T = 400 and D = 7.
Many more examples, animations and videos are available at [1].

1
The smoothness of the mean curve is a function of T . The larger the forest size the

smoother the mean prediction curve.
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Fig. 4.7: The e↵ect of tree depth. (Top row) Regression forest
trained with D = 1. Trees are degenerate (each tree corresponds only
to their root node). This corresponds to conventional linear regression.
In this case the data is more complex than a single linear model and
thus this forest under-fits. (Bottom row) Regression forest trained
with D = 5. Much deeper trees produce the opposite e↵ect, i.e. over-
fitting. This is evident in the high-frequency, spiky nature of the test-
ing posterior. In both experiments we use T = 400, axis-aligned weak
learners and probabilistic-linear prediction models.

4.4 Comparison with alternative algorithms

The previous sections have introduced the probabilistic regression for-
est model and discussed some of its properties. This section shows a
comparison between forests and allegedly the most common probabilis-
tic regression technique, Gaussian processes [73].

4.4.1 Comparison with Gaussian processes

The hallmark of Gaussian processes is their ability to model uncer-
tainty in regression problems. Here we compare regression forests with
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Fig. 4.8: Spatial smoothness, multi-modal posteriors and test-
ing uncertainty. Four more regression experiments. The squares indi-
cate labelled training data. The green curve is the estimated conditional
mean y(x) = E[y|x] =

R
y · p(y|x) dy and the grey curve the estimated

mode ŷ(x) = argmax
y

p(y|x). Note the smooth interpolating behaviour
of the mean over large gaps and increased uncertainty away from train-
ing data. The forest is capable of capturing multi-modal behaviour in
the gaps. See text for details.

Gaussian Processes on a few representative examples.2

In figure 4.9 we compare the two regression models on three di↵er-
ent training sets. In the first experiment the training data points are
simply organized along a line segment. In the other two experiments
the training data is a little more complex with large gaps. We wish to
investigate the nature of the interpolation and its confidence in those
gaps. The 2⇥ 3 table of images show posteriors corresponding to the 3
di↵erent training sets (columns) and 2 models (rows).

2
The Gaussian process results in this section were obtained with the “Gaussian

Process Regression and Classification Toolbox version 3.1”, publically available at

http://www.gaussianprocess.org/gpml/code/matlab/doc.
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Fig. 4.9:Comparing regression forests with Gaussian processes.
(a,b,c) Three training datasets and the corresponding testing poste-
riors overlaid on top. In both the forest and the GP model uncertain-
ties increase as we move away from training data. However, the actual
shape of the posterior is di↵erent. (b,c) Large gaps in the training
data are filled in both models with similarly smooth mean predictions
(green curves). However, the regression forest manages to capture the
bi-modal nature of the distributions, while the GP model produces
intrinsically uni-modal Gaussian predictions.

Gaussian processes are well known for how they model increasing
uncertainty with increasing distance from training points. The bottom
row illustrates this point very clearly. Both in extrapolated and in-
terpolated regions the associated uncertainty increases smoothly. The
Gaussian process mean prediction (green curve) is also smooth and well
behaved.

Similar behaviour can be observed for the regression forest too (top
row). As observed also in previous examples the confidence of the
prediction decreases with distance from training points. The specific
shape in which the uncertainty region evolves is a direct consequence
of the particular prediction model used (linear here). One striking dif-
ference between the forest and the GP model though is illustrated in
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Fig. 4.10: Comparing forests and GP on ambiguous training
data. (a) Input labelled training points. The data is ambiguous be-
cause a given input x may correspond to multiple values of y. (b) The
posterior p(y|x) computed via random regression forest. The middle
(ambiguous) region remains associated with high uncertainty (in grey).
(c) The posterior computed via Gaussian Processes. Conventional GP
models do not seem flexible enough to capture spatially varying noise in
training points. This yields an over-confident prediction in the central
region. In all these experiments the GP parameters have been automat-
ically optimized for optimal results, using the provided Matlab code.

figs. 4.9b,c. There, we can observe how the forest can capture bi-modal
distributions in the gaps (see orange arrows). Due to their piece-wise
nature the regression forest seems more apt at capturing multi-modal
behaviour in testing regions and thus modeling intrinsic ambiguity (dif-
ferent y values may be associated with the same x input). In contrast,
the posterior of a Gaussian process is by construction a (uni-modal)
Gaussian, which may be a limitation in some applications. The same
uni-modal limitation also applies to the recent “relevance voxel ma-
chine” technique in [76].

This di↵erence between the two models in the presence of ambigu-
ities is tested further in fig. 4.10. Here the training data itself is ar-
ranged in an ambiguous way, as a “non-function” relation (see also [63]
for computer vision examples). For the same value of x there may be
multiple training points with di↵erent values of y.

The corresponding testing posteriors are shown for the two models
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in fig. 4.10b and fig. 4.10c, respectively. In this case neither model can
model the central, ambiguous region correctly. However, notice how
although the mean curves are very similar to one another, the uncer-
tainty is completely di↵erent. The Gaussian process yields a largely
over-confident prediction in the ambiguous region; while the forest cor-
rectly yields a very large uncertainty. it may be possible to think of im-
proving the forest output e.g. by using a mixture of probabilistic-linear
predictors at each leaf (as opposed to a single line). Later chapters will
show how a tighter, more informative prediction can be obtained in
this case, using density forests.

4.5 Semantic parsing of 3D computed tomography scans

This section describes a practical application of regression forest which
is now part of the commercial product Microsoft Amalga Unified Intel-
ligence System.3

Given a 3D Computed Tomography (CT) image we wish to au-
tomatically detect the presence/absence of a certain anatomical struc-
ture, and localize it in the image (see fig. 4.11). This is useful for e.g. (i)
the e�cient retrieval of selected portions of patients scans through low
bandwidth networks, (ii) tracking patients’ radiation dose over time,
(iii) the e�cient, semantic navigation and browsing of n-dimensional
medical images, (iv) hyper-linking regions of text in radiological reports
with the corresponding regions in medical images, and (v) assisting the
image registration in longitudinal studies [50]. Details of the algorithm
can be found in [24]. Here we give a very brief summary of this al-
gorithm to show how it stems naturally from the general model of
regression forests presented here.

In a given volumetric image the position of each voxel is denoted
with a 3-vector p = (x y z). For each organ of interest we wish
to estimate the position of a 3D axis-aligned bounding box tightly
placed to contain the organ. The box is represented as a 6-vector con-
taining the absolute coordinates (in mm) of the corresponding walls:
b =

�
bL, bR, bH, bF, bA, bP

�
2 R6 (see fig. 4.12a). For simplicity here we

3 http://en.wikipedia.org/wiki/Microsoft Amalga.
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Fig. 4.11: Automatic localization of anatomy in 3D Computed
Tomography images. (a) A coronal slice (frontal view) from a test
3D CT patient’s scan. (b) Volumetric rendering of the scan to aid
visualization. (c) Automatically localized left kidney using regression
forest. Simultaneous localization of 25 di↵erent anatomical structures
takes ⇠ 4s on a single core of a standard desktop machine, with a
localization accuracy of ⇠ 1.5cm. See [24] for algorithmic details.

focus on a single organ of interest.4

The continuous nature of the output suggests casting this task as a
regression problem. Inspired by the work in [33] here we allow each voxel
to vote (probabilistically) for the positions of all six walls. So, during
testing, each voxel p in a CT image votes for where it thinks e.g. the
left kidney should be. The votes take the form of relative displacement
vectors

d(p) =
�
dL(p), dR(p), dA(p), dP(p), dH(p), dF(p)

�
2 R6

(see fig. 4.12b). The L, R, A, P, H, F symbols are conventional radiological
notation and indicate the left, right, anterior, posterior, head and foot
directions of the 3D volumetric scan. Some voxels have more influence
(because associated with more confident localization predictions) and
some less influence on the final prediction. The voxels relative weights
are estimated probabilistically via a regression forest.

4
A more general parametrization is given in [24].
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Fig. 4.12: Automatic localization of anatomy in 3D CT images.
(a) A coronal view of the abdomen of a patient in a CT scan. The
bounding box of the right kidney is shown in orange. (b) Each voxel p
in the volume votes for the position of the six walls of the box via the
relative displacements dR(p), dL(p), and so on.

For a voxel p its feature vector v(p) = (x
1

, . . . , x
i

, . . . , x
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) 2 Rd is
a collection of di↵erences:
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|
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q2B
i

J(q). (4.5)

where J(p) denotes the density of the tissue in an element of volume
at position p as measured by the CT scanner (in calibrated Hounsfield
Units). The 3D feature boxB (not to be confused with the output organ
bounding box) is displaced from the reference point p (see fig. 4.13a).
Since for each reference pixel p we can look at an infinite number of
possible feature boxes (8 B 2 R6) we have d = 1.

During training we are given a database of CT scans which have
been manually labelled with 3D boxes around organs of interest. A
regression forest is trained to learn the association of voxel features
and bounding box location. Training is achieved by maximizing a con-
tinuous information gain as in (4.1). Assuming multivariate Gaussian
distributions at the nodes yields the already known form of continuous
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Fig. 4.13: Features and results. (a) Feature responses are defined
via integral images in displaced 3D boxes, denoted with B. (b,c,d,e)
Some results on four di↵erent test patients. The right kidney (red box)
is correctly localized in all scans. The corresponding ground-truth is
shown with a blue box. Note the variability in position, shape and
appearance of the kidney, as well as larger scale variations in patient’s
body, size, shape and possible anomalies such as the missing left lung,
in (e).

information gain:

I
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= log |⇤(S
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with ⇤(S
j

) the 6 ⇥ 6 covariance matrix of the relative displacement
vector d(p) computed for all points p 2 S

j

. Note that here as a pre-
diction model we are using a multivariate, probabilistic-constant model
rather than the more general probabilistic-linear one used in the earlier
examples. Using the objective function (4.6) encourages the forest to
cluster voxels together so as to ensure small determinant of prediction
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covariances, i.e. highly peaked and confident location predictions. In
this application, the parameters of a split node j are

✓
j

= (B
j

, ⌧
j

) 2 R7,

with B
j

the “probe” feature box, and ⌧
j

a scalar parameter. Here we
use an axis-aligned weak learner model

h(v,✓
j

) = [�(v,B
j

) > ⌧
j

] ,

with �(v,B
j

) = x
j

. The leaf nodes are associated with multivariate-
Gaussians as their predictor model. The parameters of such Gaussians
are learned during training from all the relative displacements arriving
at the leaf.

During testing all voxels of a previously unseen test volume are
pushed through all trees in the regression forest until they reach their
leaves, and the corresponding Gaussian predictions for the relative dis-
placements are read o↵. Finally, posteriors over relative displacements
are mapped to posteriors over absolute positions [24].

Figure 4.13 shows some illustrative results on the localization of the
right kidney in 2D coronal slices. In fig. 4.13e the results are relatively
robust to the large anomaly (missing left lung). Results on 3D detec-
tions are shown in fig. 4.11b with many more available in the original
paper.

An important advantage of decision forests (compared to e.g. neu-
ral networks) is their interpretability. In fact, in a forest it is possible
to look at individual nodes and make sense of what has been learned
and why. When using a regression forest for anatomy localization the
various tree nodes represent clusters of points. Each cluster predicts
the location of a certain organ with more or less confidence. So, we can
think of the nodes associated with higher prediction confidence as auto-
matically discovered salient anatomical landmarks. Figure 4.14 shows
some such landmark regions when localizing kidneys in a 3D CT scan.
More specifically, given a trained regression tree and an input volume,
we select one or two leaf nodes with high prediction confidence for a
chosen organ class (e.g. l. kidney). Then, for each sample arriving at
the selected leaf nodes, we shade in green the cuboidal regions of the
input volume that were used during evaluation of the parent nodes’
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Fig. 4.14:Automatic discovery of salient anatomical landmarks.
(a) Leaves associated with the most peaked densities correspond to
clusters of points which predict organ locations with high confidence.
(b) A 3D rendering of a CT scan and (in green) landmarks automat-
ically selected as salient predictors of the position of the left kidneys.
(c) Same as in (b) but for the right kidney.

feature tests. Thus, the green regions represent some of the anatomical
locations that were used to estimate the location of the chosen organ. In
this example, the bottom of the left lung and the top of the left pelvis
are used to predict the position of the left kidney. Similarly, the bot-
tom of the right lung is used to localize the right kidney. Such regions
correspond to meaningful, visually distinct, anatomical landmarks that
have been computed without any manual tagging.

Recently, regression forests were used for anatomy localization in
the more challenging full-body, magnetic resonance images [68]. See
also [38, 76] for alternative techniques for regressing regions of interest
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in brain MR images with localization of anatomically salient voxels.
The interested reader is invited to browse the InnerEye project page [2]
for further examples and applications of regression forests to medical
image analysis.



5
Density forests

Chapters 3 and 4 have discussed the use of decision forests in supervised
tasks, i.e. when labelled training data is available. In contrast, this
chapter discusses the use of forests in unlabelled scenarios.

For instance, one important task is that of discovering the intrinsic
nature and structure of large sets of unlabelled data. This task can be
tackled via another probabilistic model, density forest. Density forests
are explained here as an instantiation of our more abstract decision
forest model (described in chapter 2). Given some observed unlabelled
data which we assume has been generated from a probabilistic den-
sity function we wish to estimate the unobserved underlying generative
model itself. More formally, one wishes to learn the density p(v) which
has generated the data.

The problem of density estimation is closely related to that of data
clustering. Although much research has gone in tree-based clustering
algorithms, to our knowledge this is the first time that ensembles of
randomized trees are used for density estimation.

We begin with a very brief literature survey, then we show how to
adapt the generic forest model to the density estimation task and then
discuss advantages and disadvantages of density forests in comparison

68
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with alternative techniques.

5.1 Literature on density estimation

The literature on density estimation is vast. Here we discuss only a few
representative papers.

Density estimation is closely related to the problem of data cluster-
ing, for which an ubiquitous algorithm is k-means [55]. A very success-
ful probabilistic density model is the Gaussian mixture model (GMM),
where complex distributions can be approximated via a collection of
simple (multivariate) Gaussian components. Typically, the parameters
of a Gaussian mixture are estimated via the well known Expectation
Maximization algorithm [5]. EM can be thought of as a probabilistic
variant of k-means.

Popular, non-parametric density estimation techniques are kernel-
based algorithms such as the Parzen-Rosenblatt windows estima-
tor [67]. The advantage of kernel-based estimation over e.g. more crude
histogram-based techniques is in the added smoothness of the recon-
struction which can be controlled by the kernel parameters. Closely
related is the k-nearest neighbour density estimation algorithm [5].

In Breiman’s seminal work on forests the author mentions using
forests for clustering unsupervised data [11]. However, he does it via
classification, by introducing dummy additional classes. In contrast,
here we use a well defined information gain-based optimization, which
fits well within our unified forest model. Forest-based data clustering
has been discussed in [61, 83] for computer vision applications.

For further reading on general density estimation techniques the
reader is invited to explore the following material [5, 84].

5.2 Specializing the forest model for density estimation

This section specializes the generic forest model introduced in chapter 2
for use in density estimation.

Problem statement. The density estimation task can be summa-
rized as follows:
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Fig. 5.1: Input data and density forest training. (a) Unlabelled
data points using for training a density forest are shown as dark circles.
White circles indicate previously unseen test data. (b) Density forests
are ensembles of clustering trees.

Given a set of unlabelled observations we wish to estimate the

probability density function from which such data has been gen-

erated.

Each input data point v is represented as usual as a multi-
dimensional feature response vector v = (x

1

, · · · , x
d

) 2 Rd. The
desired output is the entire probability density function p(v) �
0 s.t.

R
p(v)dv = 1, for any generic input v. An explanatory illustra-

tion is shown in fig. 5.1a. Unlabelled training data points are denoted
with dark circles, while white circles indicate previously unseen test
data.

What are density forests? A density forest is a collection of ran-
domly trained clustering trees (fig. 5.1b). The tree leaves contain simple
prediction models such as Gaussians. So, loosely speaking a density for-
est can be thought of as a generalization of Gaussian mixture models
(GMM) with two di↵erences: (i) multiple hard clustered data partitions
are created, one by each tree. This is in contrast to the single “soft”
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clustering generated by the EM algorithm, (ii) the forest posterior is a
combination of tree posteriors. So, each input data point is explained
by multiple clusters (one per tree). This is in contrast to the single
linear combination of Gaussians in a GMM.

These concepts will become clearer later. Next, we delve into a de-
tailed description of the model components, starting with the objective
function.

The training objective function. Given a collection of unlabelled
points {v} we train each individual tree in the forest independently
and if possible in parallel. As usual we employ randomized node opti-
mization. Thus, optimizing the jth split node is done as the following
maximization:

✓⇤
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= arg max
✓

j

2T
j

I
j

with the generic information gain I
j

defined as:
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In order to fully specify the density model we still need to define
the exact form of the entropy H(S) of a set of training points S. Unlike
classification and regression, here the are no ground-truth labels. Thus,
we need to define an unsupervised entropy, i.e. one which applies to
unlabelled data. As with a GMM, we use the working assumption of
multi-variate Gaussian distributions at the nodes. Then, the di↵erential
(continuous) entropy of an d�variate Gaussian can be shown to be

H(S) = 1

2
log
⇣
(2⇡e)d|⇤(S)|

⌘

(with ⇤ the associated d ⇥ d covariance matrix). Consequently, the
information gain in (5.1) reduces to
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with | · | indicating a determinant for matrix arguments, or cardinality
for set arguments.
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Motivation. For a set of data points in feature space, the determinant
of the covariance matrix is a function of the volume of the ellipsoid
corresponding to that cluster. Therefore, by maximizing (5.2) the tree
training procedure tends to split the original dataset S

0

into a number
of compact clusters. The centres of those clusters tends to be placed
in areas of high data density, while the separating surfaces are placed
along regions of low density. In (5.2), weighting by the cardinality of
children sets avoids splitting o↵ degenerate, single-point clusters.

Finally, our derivation of density-based information gain in (5.2)
builds upon an assumption of Gaussian distribution at the nodes. Of
course, this is not realistic as real data may be distributed in much more
complex ways. However, this assumption is useful in practice as it yields
a simple and e�cient objective function. Furthermore, the hierarchical
nature of the trees allows us to construct very complex distributions by
mixing the individual Gaussians associated at the leaves. Alternative
measures of “cluster compactness” may also be employed.

The prediction model. The set of leaves in the tth tree in a forest
defines a partition of the data such that

l(v) : Rd ! L ⇢ N

where l(v) denotes the leaf reached (deterministically) by the input
point v, and L the set of all leaves in a given tree (the tree index t is
not shown here to avoid cluttering the notation). The statistics of all
training points arriving at each leaf node are summarized by a single
multi-variate Gaussian distribution N (v;µ

l(v), ⇤l(v)). Then, the output
of the tth tree is:

p
t

(v) =
⇡
l(v)

Z
t

N (v;µ
l(v), ⇤l(v)). (5.3)

The vector µ
l

denotes the mean of all points reaching the leaf l and ⇤
l

the associated covariance matrix. The scalar ⇡
l

is the proportion of all
training points that reach the leaf l, i.e. ⇡

l

= |S
l

|
S0

. Thus (5.3) defines a
piece-wise Gaussian density (see fig. 5.2 for an illustration).
Partition function. Note that in (5.3) each Gaussian is truncated by
the boundaries of the partition cell associated with the corresponding
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Fig. 5.2:A tree density is piece-wise Gaussian. (a,b,c,d) Di↵erent
views of a tree density p

t

(v) defined over an illustrative 2D feature
space. Each individual Gaussian component is defined over a bounded
domain. See text for details.

leaf (see fig. 5.2). Thus, in order to ensure probabilistic normalization
we need to incorporate the partition function Z

t

, which is defined as
follows:
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!
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However, in a density forest each data point reaches exactly one termi-
nal node. Thus, the conditional p(l|v) is a delta function p(l|v) = [v 2
l(v)] and consequently (5.4) becomes

Z
t

=

Z

v
⇡
l(v) N (v;µ

l(v), ⇤l(v)) dv. (5.5)

As it is often the case when dealing with generative models, computing
Z
t

in high dimensions may be challenging.
In the case of axis-aligned weak learners it is possible to compute

the partition function via the cumulative multivariate normal distribu-
tion function. In fact, the partition function Z

t

is the sum of all the
volumes subtended by each Gaussian cropped by its associated parti-
tion cell (cuboidal in shape, see fig. 5.2). Unfortunately, the cumulative
multivariate normal does not have a close form solution. However, ap-
proximating its functional form has is a well researched problem and a
number of good numerical approximations exist [39, 71].

For more complex weak-learners it may be easier to approximate Z
t

by numerical integration, i.e.
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Fig. 5.3: Density forest: the ensemble model. A density forest is
a collection of clustering trees trained on unlabelled data. The tree
density is the Gaussian associated with the leaf reached by the input

test point: p
t

(v) =
⇡

l(v)

Z

t

N
⇣
v;µ

l(v), ⇤l(v)

⌘
. The forest density is the

average of all tree densities: p(v) = 1

T

P
T

t=1

p
t

(v).

with the points v
i

generated on a finite regular grid with spacing �
(where � represents a length, area, volume etc. depending on the di-
mensionality of the domain). Smaller grid cells yield more accurate ap-
proximations of the partition function at a greater computational cost.
Recent, Monte Carlo-based techniques for approximating the partition
function are also a possibility [64, 85]. Note that estimating the parti-
tion function is necessary only at training time. One may also think of
using density forests with a predictor model other than Gaussian.

The ensemble model. The forest density is given by the average of
all tree densities

p(v) =
1

T

TX

t=1

p
t

(v), (5.6)

as illustrated in fig. 5.3.

Discussion. There are similarities and di↵erences between the prob-
abilistic density model defined above and a conventional Gaussian mix-
ture model. For instance, both models are built upon Gaussian compo-
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nents. However, given a single tree an input point v belongs determin-

istically to only one of its leaves, and thus only one domain-bounded
Gaussian component. In a forest with T trees a point v belongs to T

components, one per tree. The ensemble model (5.6) induces a uniform
“mixing” across the di↵erent trees. The benefits of such forest-based
mixture model will become clearer in the next section. The parameters
of a GMM are typically learned via Expectation Maximization (EM).
In contrast, the parameters of a density forest are learned via a hierar-
chical information gain maximization criterion. Both algorithms may
su↵er from local minima.

5.3 E↵ect of model parameters

This section studies the e↵ect of the forest model parameters on the
accuracy of density estimation. We use many illustrative, synthetic ex-
amples, designed to bring to life di↵erent properties, advantages and
disadvantages of density forests compared to alternative techniques.
We begin by investigating the e↵ect of two of the most important pa-
rameters: the tree depth D and the forest size T .

5.3.1 The e↵ect of tree depth

Figure 5.4 presents first density forest results. Figure 5.4a shows some
unlabelled points used to train the forest. The points are randomly
drawn from two 2D Gaussian distributions.

Three di↵erent density forests have been trained on the same input
set with T = 200 and varying tree depthD. In all cases the weak learner
model was of the axis-aligned type. Trees of depth 2 (stumps) produce
a binary partition of the training data which, in this simple example,
produce perfect separation. As usual the trees are all slightly di↵erent
from one another, corresponding to di↵erent decision boundaries (not
shown in the figure). In all cases each leaf is associated with a bounded
Gaussian distribution learned from the training points arriving at the
leaf itself. We can observe that deeper trees (e.g. for D = 5) tend
to create further splits and smaller Gaussians, leading to over-fitting
on this simple dataset. Deeper trees tend to “fit to the noise” of the
training data, rather than capture the underlying nature of the data.
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Fig. 5.4: The e↵ect of tree depth on density. (a) Input unlabelled
data points in a 2D feature space. (b,c,d) Individual trees out of three
density forests trained on the same dataset, for di↵erent tree depths
D. A forest with unnecessarily deep trees tends to fit to the training
noise, thus producing very small, high-frequency bumps in the density.

In this simple example D = 2 (top row) produces the best results.

5.3.2 The e↵ect of forest size

Figure 5.5 shows the output of six density forests trained on the input
data in fig. 5.4a for two di↵erent values of T and three values of D.
The images visualize the output density p(v) computed for all points
in a square subset of the feature space. Dark pixels indicate low values
and bright pixels high values of density.

We observe that even if individual trees heavily over-fit (e.g. for
D = 6), the addition of further trees tends to produce smoother densi-
ties. This is thanks to the randomness of each tree density estimation
and reinforces once more the benefits of a forest ensemble model. The
tendency of larger forests to produce better generalization has been
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Fig. 5.5: The e↵ect of forest size on density. Densities p(v) for six
density forests trained on the same unlabelled dataset for varying T

and D. Increasing the forest size T always improves the smoothness of
the density and the forest generalization, even for deep trees.

observed also for classification and regression and it is an important
characteristic of forests. Since increasing T always produces better re-
sults (at an increased computational cost) in practical applications we
can just set T to a “su�ciently large” value, without worrying too much
about optimizing its value.

5.3.3 More complex examples

A more complex example is shown in fig. 5.6. The noisy input data is
organized in the shape of a four-arm spiral (fig. 5.6a). Three density
forests are trained on the same dataset with T = 200 and varying
depth D. The corresponding densities are shown in fig. 5.6b,c,d. Here,
due to the greater complexity of the input data distribution shallower
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Fig. 5.6: Density forest applied to a spiral data distribution. (a)
Input unlabelled data points in their 2D feature space. (b,c,d) Forest
densities for di↵erent tree depths D. The original training points are
overlaid in green. The complex distribution of input data is captured
correctly by a deeper forest, e.g. D = 6, while shallower trees produce
under-fitted, overly smooth densities.

trees yield under-fitting, i.e. overly smooth and detail-lacking density
estimates. In this example good results are obtained for D = 6 as the
density nicely captures the individuality of the four spiral arms while
avoiding fitting to high frequency noise. Just like in classification and
regression here too the parameter D can be used to set a compromise
between smoothness of output and the ability to capture structural
details.

So far we have described the density forest model and studied some
of its properties on synthetic examples. Next we study density forests
in comparison to alternative algorithms.

5.4 Comparison with alternative algorithms

This section discusses advantages and disadvantages of density forests
as compared to the most common parametric and non-parametric den-
sity estimation techniques.

5.4.1 Comparison with non-parametric estimators

Figure 5.7 shows a comparison between forest density, Parzen window
estimation and k-nearest neighbour density estimation. The compari-
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son is run on the same three datasets of input points. In the first exper-
iments points are randomly drawn from a five-Gaussian mixture. In the
second they are arranged along an “S” shape and in the third they are
arranged along four short spiral arms. Comparison between the forest
densities in fig. 5.7b and the corresponding non-parametric densities in
fig. 5.7c,d clearly shows much smoother results for the forest output.
Both the Parzen and the nearest neighbour estimators produce arti-
facts due to hard choices of e.g. the Parzen window bandwidth or the
number k of neighbours. Using heavily optimized single trees would
also produce artifacts. However, the use of many trees in the forest
yields the observed smoothness.

A quantitative assessment of the density forest model is presented
at the end of this chapter. Next, we compare (qualitatively) density
forests with variants of the Gaussian mixture model.

5.4.2 Comparison with GMM EM

Figure 5.8 shows density estimates produced by forests in comparison to
various GMM-based densities for the same input datasets as in fig. 5.7a.
Figure 5.7b shows the (visually) best results obtained with a GMM,
using EM for its parameter estimation [5]. We can observe that on
the simpler 5-component dataset (experiment 1) the two models work
equally well. However, the “S” and spiral-shaped examples show very
distinct blob-like artifacts when using the GMM model. One may argue
that this is due to the use of too few components. So we increased
their number k and the corresponding densities are shown in fig. 5.7c.
Artifacts still persist. Some of them are due to the fact that the greedy
EM optimization gets stuck in local minima. So, a further alternative
to improve the GMM results is to add randomness. In fig. 5.7c, for
each example we have trained 400 GMM-EM models (trained with 400
random initializations, a common way of injecting randomness in GMM
training) and averaged together their output to produce a single density
(as shown in the figure). The added randomness produces benefits in
terms of smoothness, but the forest densities are still slightly superior,
especially for the spiral dataset.

In summary, our synthetic experiments confirm that the use of ran-
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Fig. 5.7: Comparison between density forests and non parametric estima-

tors. (a) Input unlabelled points for three di↵erent experiments. (b) Forest-based
densities. Forests were computed with T = 200 and varying depth D. (c) Parzen
window densities (with Gaussian kernel). (d) K-nearest neighbour densities. In all
cases parameters were optimized to achieve the best possible results. Notice the
abundant artifacts in (c) and (d) as compared to the smoother forest estimates in
(b).

domness (either in a forest model or in a Gaussian mixture model)
yields improved results. Possible issues with EM getting stuck in local
minima produce artifacts which appear to be mitigated in the forest
model. Let us now look at di↵erences in terms of computational cost.
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Fig. 5.8: Comparison with GMM EM (a) Forest-based densities. Forests were
computed with T = 200 and optimized depth D. (b) GMM density with a relatively
small number of Gaussian components. The model parameters are learned via EM.
(c) GMM density with a larger number of Gaussian components. Increasing the
components does not remove the blob-like artifacts. (d) GMM density with multiple
(400) random re-initializations of EM. Adding randomness to the EM algorithm
improves the smoothness of the output density considerably. The results in (a) are
still visually smoother.

Comparing computational complexity. Given an input test
point v evaluating p(v) under a random-restart GMM model has cost

R⇥ T ⇥G, (5.7)



82 Density forests

with R the number of random restarts (the number of trained GMM
models in the set), T the number of Gaussian components and G the
cost of evaluating v under each individual Gaussian.

Similarly, estimating p(v) under a density forest with T trees of
maximum depth D has cost

T ⇥G + T ⇥D ⇥B, (5.8)

with B the cost of a binary test at a split node.
The cost in (5.8) is an upper bound because the average length

of a generic root-leaf path is less than D nodes. Depending on the
application, the binary tests can be extremely e�cient to compute1,
thus we may be able to ignore the second term in (5.8). In this case
the cost of testing a density forest becomes comparable to that of a
conventional, single GMM (with T components).

Comparing training costs between the two models is a little harder
because it involves the number of EM iterations (in the GMM model)
and the value of ⇢ (in the forest). In practical applications (especially
real-time ones) minimizing the testing time is more important than
reducing the training time. Finally, testing of both GMM as well as
density forests can be easily parallelized.

5.5 Sampling from the generative model

The density distribution p(v) we learn from the unlabelled input data
represents a probabilistic generative model. In this section we de-
scribe an algorithm for the e�cient sampling of random data under
the learned model. The sampling algorithm uses the structure of the
forest itself (for e�ciency) and proceeds as described in algorithm 5.1.
See also fig. 5.9 for an accompanying illustration.

In this algorithm for each sample a random path from a tree root
to one of its leaves is randomly generated and then a feature vec-
tor randomly generated from the associated Gaussian. Thus, drawing
one random sample involves generating at most D random numbers
from uniform distributions plus sampling a d-dimensional vector from

1
A weak learner binary stump is applied usually only to a small, selected subset of features

�(v) and thus it can be computed very e�ciently.
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Fig. 5.9: Drawing random samples from the generative density
model. Given a trained density forest we can generate random samples
by: i) selecting one of the component trees, ii) randomly navigating
down to a leaf and, iii) drawing a sample from the associated Gaussian.
The precise algorithmic steps are listed in algorithm 5.1.

Given a density forest with T trees:
(1) Draw uniformly a random tree index t 2 {1, , T} to select a single tree

in the forest.
(2) Descend the tree

(a) Starting at the root node, for each split node randomly generate
the child index with probability proportional to the number of
training points in edge (proportional to the edge thickness in
fig. 5.9);

(b) Repeat step 2 until a leaf is reached.

(3) At the leaf draw a random sample from the domain bounded Gaussian
stored at that leaf.

Algorithm 5.1: Sampling from the density forest model.

a Gaussian.
An equivalent and slightly faster version of the sampling algorithm

is obtained by compounding all the probabilities associated with indi-
vidual edges at di↵erent levels together as probabilities associated with
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Given a set of R GMMs learned with random restarts:
(1) Draw uniformly a GMM index r 2 {1, , R} to select a single GMM in

the set.
(2) Select one Gaussian component by randomly drawing in proportion to

the associated priors.
(3) Draw a random sample from the selected Gaussian component.

Algorithm 5.2: Sampling from a random-restart GMM.

the leaves only. Thus, the tree traversal step (step 2 in algorithm 5.2)
is replaced by direct random selection of one of the leaves.

E�ciency. The cost of randomly drawingN samples under the forest
model is

N ⇥ (1 + 1)⇥ J + N ⇥G

with J the cost (almost negligible) of randomly generating an inte-
ger number and G the cost of drawing a d-dimensional vector from a
Gaussian distribution.

For comparison, sampling from a random-restart GMM is illus-
trated in the algorithm 5.2. The cost of drawing samples under a GMM
model is also

N ⇥ (1 + 1)⇥ J + N ⇥G

It is interesting to see how although the two algorithms are built upon
di↵erent data structures, their steps are very similar. Their theoretical
complexity is the same.

In summary, despite the added richness in the hierarchical structure
of the density forest its sampling complexity is very much comparable
to that of a random-restart GMM.

Results. Figure 5.10 shows results of sampling 10, 000 random points
from density forest trained on five di↵erent input datasets. The top row
of the figure shows the densities on a 2D feature space. The bottom
row shows (with small red dots) random points drawn from the cor-
responding forests via the algorithm described in algorithm 5.1. Such
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Fig. 5.10: Sampling results (Top row) Densities learned from hun-
dreds of training points, via density forests. (Bottom row) Random
points generated from the learned forests. We draw 10,000 random
points per experiment (di↵erent experiments in di↵erent columns).

a simple algorithm produces good results both for simpler, Gaussian-
mixture distributions (figs. 5.10a,b) as well as more complex densities
like spirals and other convolved shapes (figs. 5.10c,d,e).

5.6 Dealing with non-function relations

Chapter 4 concluded by showing shortcomings of regression forests
trained on inherently ambiguous training data, i.e. data such that for
a given value of x there may be multiple corresponding values of y (a
relation as opposed to a function). This section shows how better pre-
dictions may be achieved in ambiguous settings by means of density
forests.

5.6.1 Regression from density

In fig. 4.10b a regression forest was trained on ambiguous training data.
The corresponding regression posterior p(y|x) yielded a very large un-
certainty in the ambiguous, central region. However, despite its inherent
ambiguity, the training data shows some interesting, multi-modal struc-
ture that if modelled properly could increase the prediction confidence
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Fig. 5.11: Training density forest on a “non-function” dataset.
(a) Input unlabelled training points on a 2D space. (b,c,d) Three den-
sity forests are trained on such data, and the corresponding densities
shown in the figures. Dark pixels correspond to small density and vice-
versa. The original points are overlaid in green. Visually reasonable
results are obtained in this dataset for D = 4.

(see also [63]).
We repeat a variant of this experiment in fig. 5.11. However, this

time a density forest is trained on the “S-shaped” training set. In con-
trast to the regression approach in chapter 4, here the data points are
represented as pairs (x, y), with both dimensions treated equally as
input features. Thus, now the data is thought of as unlabelled. Then,
the joint generative density function p(x, y) is estimated from the data.
The density forest for this 2D dataset remains defined as

p(x, y) =
1

T

TX

t=1

p
t

(x, y)

with t indexing the trees. Individual tree densities are
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In fig. 5.11 we observe that a forest with D = 4 produces a visually
smooth, artifact-free density. Shallower or deeper trees produce under-
fitting and over-fitting, respectively. Now, for a previously unseen, input
test point v = (x, y) we can compute its probability p(v). However, in
regression, at test time we only know the independent variable x, and its
associated y is unknown (y is the quantity we wish to regress/estimate).
Next we show how we can exploit the known generative density p(x, y)
to predict the regression conditional p(y|x).

Figure 5.12a shows the training points and an input value for the
independent variable x = x⇤. Given the trained density forest and x⇤

we wish to estimate the conditional p(y|x = x⇤). For this problem we
make the further assumption that the forest has been trained with
axis-aligned weak learners. Therefore, some split nodes act only on the
x coordinate (namely x-nodes) and others only on the y coordinate
(namely y-nodes). Figure 5.12b illustrates this point. When testing a
tree on the input x = x⇤ the y-nodes cannot apply the associated split
function (since the value of y is unknown). In those cases the data point
is sent to both children. In contrast, the split function associated to the
x-nodes is applied as usual and the data sent to the corresponding
single child. So, in general multiple leaf nodes will be reached by a
single input (see the bifurcating orange paths in fig. 5.12b). As shown
in fig. 5.12c this corresponds to selecting multiple, contiguous cells in
the partitioned space, so as to cover the entire y range (for a fixed x⇤).

So, along the line x = x⇤ several Gaussians are encountered, one
per leaf (see fig. 5.12d and fig. 5.13). Consequently, the tree conditional
is piece-wise Gaussian and defined as follows:

p
t

(y|x = x⇤) =
1

Z
t,x
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. In (5.9) L
t,x

⇤ denotes the subset of all leaves in the
tree t reached by the input point x⇤ (three leaves out of four in the
example in the figure).

The conditional partition function Z
t,x

⇤ ensures normalization, i.e.
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Fig. 5.12: Regression from density forests. (a) 2D training points
are shown in black. The green vertical line denotes the value x⇤ of
the independent variable. We wish to estimate p(y|x = x⇤). (b) When
testing a tree on the input x⇤ some split nodes cannot apply their
associated split function and the data is sent to both children (see
orange paths). (c) The line x = x⇤ intersects multiple cells in the
partitioned feature space. (d) The line x = x⇤ intersects multiple leaf
Gaussians. The conditional output is a combination of those Gaussians.
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Fig. 5.13: The tree conditional is a piece-wise Gaussian. See text
for details.

with � denoting the 1D cumulative normal distribution function
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Finally, the forest conditional is:

p(y|x = x⇤) =
1

T

TX

t=1

p
t

(y|x = x⇤)

Figure 5.14 shows the forest conditional distribution computed for
five fixed values of x. When comparing e.g. the conditional p(y|x = x

3

)
in fig. 5.14 with the distribution in 4.10b we see that now the condi-
tional shows three very distinct modes rather than a large, uniformly
uninformative mass. Although some ambiguity remains (it is inherent
in the training set) now we have a more precise description of such
ambiguity.

5.6.2 Sampling from conditional densities

We conclude this chapter by discussing the issue of e�ciently drawing
random samples from the conditional model p(y|x).
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Fig. 5.14: Regression from density forests. The conditionals
p(y|x = x

i

) show multimodal behaviour. This is an improvement com-
pared to regression forests.

Given a fixed and known x = x⇤ we would like to sample di↵erent
random values of y distributed according to the conditional p(y|x =
x⇤). Like in the previous version we assume available a density forest
which has been trained with axis-aligned weak learners (fig. 5.15). The
necessary steps are described in Algorithm 5.3.

Each iteration of Algorithm 5.3 produces a value y drawn randomly
from p(y|x = x⇤). Results on our synthetic example are shown in
fig. 5.16, for five fixed values of the independent variable x. In fig. 5.16b
darker regions indicate overlapping sampled points. Three distinct clus-
ters of points are clearly visible along the x = x

3

line, two clusters along
the x = x

2

and along the x = x
4

lines and so on. This algorithm ex-
tends to more than two dimensions. As expected, the quality of the
sampling depends on the usual parameters such as the tree depth D,
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Fig. 5.15: Sampling from conditional model. Since x is known and
y unknown y-nodes cannot apply the associated split function. When
sampling from such a tree a child of a y-node is chosen randomly.
Instead, the child of an x-node is selected deterministically. See text
for details.

the forest size T , the amount of training randomness ⇢ etc.

5.7 Quantitative analysis

This section assesses the accuracy of the density estimation algorithm
with respect to ground-truth. Figure 5.17a shows a ground-truth prob-
ability density function. The density is represented non-parametrically
as a normalized histogram defined over the 2D (x

1

, x
2

) domain.
Given the ground-truth density we randomly sample 5, 000 points

numerically (fig. 5.17b), via the multivariate inverse probability integral
transform algorithm [26]. The goal now is as follows: Given the sampled
points only, reconstruct a probability density function which is as close
as possible to the ground-truth density.

Thus, a density forest is trained using the sampled points alone. No
use is made of the ground-truth density in this stage. Given the trained
forest we test it on all points in a predefined domain (not just on the
training points, fig. 5.17c). Finally, a quantitative comparison between
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Given a density forest with T trees trained with axis-aligned weak learners and an
input value x = x

⇤:
(1) Sample uniformly t 2 {1, · · · , T} to select a tree in the forest.
(2) Starting at the root node descend the tree by:

• at x-nodes applying the split function and following the corre-
sponding branch.

• at a y-node j random sample one of the two children accord-

ing to their respective probabilities: P2j+1 =
|S2j+1|
|Sj |

, P2j+2 =
|S2j+2|
|Sj |

.

(3) Repeat step 2 until a (single) leaf is reached.
(4) At the leaf sample a value y from the domain bounded 1D conditional

p(y|x = x

⇤) of the 2D Gaussian stored at that leaf.

Algorithm 5.3: Sampling from conditionals via a forest.

Fig. 5.16: Results on conditional point sampling. Tens of thou-
sands of random samples of y are drawn for five fixed positions in x

following algorithm 5.3. In (b) the multimodal nature of the under-
lying conditional becomes apparent from the empirical distribution of
the samples.

the estimated density (p(v)) and the ground-truth one (pgt(v)) can
be carried out. The density reconstruction error is computed here as a
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Fig. 5.17: Quantitative evaluation of forest density estimation.
(a) An input ground-truth density (non-Gaussian in this experiment).
(b) Thousands of random points drawn randomly from the density.
The points are used to train four density forests with di↵erent depths.
(c) During testing the forests are used to estimate density values for
all points in a square domain. (d) The reconstructed densities are com-
pared with the ground-truth and error curves plotted as a function of
the forest size T . As expected, larger forests yield higher accuracy. In
these experiments we have used four forests with T = 100 trees and
D 2 {3, 4, 5, 6}.

sum of squared di↵erences:

E =
X

v

�
p(v)� pgt(v)

�
2

(5.10)

Alternatively one may consider the technique in [90]. Note that due to
probabilistic normalization the maximum value of the error in (5.10)
is 4. The curves in fig. 5.17d show how the reconstruction error di-
minishes with increasing forest size and depth. Unsurprisingly, in our
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Fig. 5.18: Quantitative evaluation, further results. (a) Input
ground-truth densities. (b) Thousands of points sampled randomly
from the ground-truth densities. (c) Densities estimated by the for-
est. Density values are computed for all points in the domain (not just
the training points). (d) Error curves as a function of the forest size
T . As expected a larger forest yields better accuracy. These results are
obtained with T = 100 and D = 5. Di↵erent parameter values and
using richer weak learners may improve the accuracy in troublesome
regions (e.g. at the centre of the spiral arms).

experiments we have observed the overall error to start increasing again
after an optimal value of D (suggesting overfitting).

Figure 5.18 shows further quantitative results on more complex ex-
amples. In the bottom two examples some di�culties arise in the central
part (where the spiral arms converge). This causes larger errors. Us-
ing di↵erent weak learners (e.g. curved surfaces) may produce better
results in those troublesome areas.

Density forests are the backbone of manifold learning and semi-
supervised learning techniques, described next.
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Manifold forests

The previous chapter has discussed the use of decision forests for mod-
eling the density of unlabelled data. This has led to an e�cient prob-
abilistic generative model which captures the intrinsic structure of the
data itself.

This chapter delves further into the issue of learning the structure of
high-dimensional data as well as mapping it onto a much lower dimen-
sional space, while preserving relative distances between data points.
This task goes under the name of manifold learning and is closely re-
lated to dimensionality reduction and embedding.

This task is important because real data is often characterized by
a very large number of dimensions. However, a careful inspection of-
ten shows a much lower dimensional underlying distribution (e.g. on
a hyper-plane, or a curved surface etc.). So, if we can automatically
discover the underlying manifold and “unfold” it, this may lead to eas-
ier data interpretation as well as more e�cient algorithms for handling
such data.

Here we show how decision forests can be used also for mani-
fold learning. Advantages with respect to other techniques include:
(i) computational e�ciency (due to ease of parallelization of forest-

95
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based algorithms), (ii) automatic selection of discriminative features
via information-based energy optimization, (iii) being part of a more
general forest model and, in turn code re-usability, and (iv) automatic
estimation of the optimal dimensionality of the target space (this is in
common with other spectral techniques). After a brief literature sur-
vey we discuss details of the manifold forest model and then show its
properties with examples and experiments.

6.1 Literature on manifold learning

Discovering the intrinsic structure of a dataset (manifold learning) and
mapping it onto a lower dimensional representation (dimensionality
reduction or embedding) are related problems which have been inves-
tigated at length in the literature. The simplest algorithm is “principal
component analysis” (PCA) [48]. PCA is based on the computation of
directions of maximum data spread. This is obtained simply by eigen-
decomposition of the data covariance matrix computed in the original
space. Therefore, PCA is a linear model and as such has considerable
limitations for more realistic problems. A popular, nonlinear technique
is “isometric feature mapping” (or IsoMap) [92] which estimates low
dimensional embeddings that tend to preserve geodesic distances be-
tween point pairs.

Manifold forests build upon “Laplacian eigenmaps” [4] which is a
technique derived from spectral graph theory. Laplacian eigenmaps try
to preserve local pairwise point distances only, with a simple and e�-
cient algorithm. This technique has very close connections with spec-
tral clustering and the normalized cuts image segmentation algorithm
in [81]. Recent probabilistic interpretation of spectral dimensionality
reduction may be found in [62, 25]. A generative, probabilistic model
for learning a latent manifold is discussed in [6].

Manifold learning has recently become popular in the medical image
analysis community, e.g. for cardiac analysis [103, 28], registration [40]
and brain image analysis [34]. A more thorough exploration of the
vast literature on manifold learning and dimensionality reduction is
beyond the scope of this work. The interested reader is referred to
some excellent surveys in [16, 18].
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6.2 Specializing the forest model for manifold learning

The idea of using tree-based random space projections for manifold
learning is not new [31, 44]. Here we show how a whole ensemble of
randomized trees can be used for this purpose, and its advantages. We
start by specializing the generic forest model (chapter 2) for use in
manifold learning.

Problem statement. The manifold learning task is summarized
here as follows:

Given a set of k unlabelled observations {v
1

,v
2

, . . . ,v
i

, . . . ,v
k

}
with v

i

2 Rd

we wish to find a smooth mapping f : Rd !2
Rd

0
, f(v

i

) = v0
i

such that d0 << d and that preserves the

observations’ relative geodesic distances.

As illustrated in fig. 6.1 each input observation v is represented as a
multi-dimensional feature response vector v = (x

1

, · · · , x
d

) 2 Rd. The
desired output is the mapping function f(·).

In fig. 6.1a input data points are denoted with circles. They live in
a 2D space. We wish to find a function f(·) which maps those points
to their corresponding locations in a lower dimensional space (in the
figure, d0 = 1) such that Euclidean distances in the new space are as
close as possible to the geodesic distances in the original space.

What are manifold forests? As mentioned, the manifold learn-
ing problem and the density estimation one are closely related. This
chapter builds upon density forests, with much of the mathematical
modeling borrowed from chapter 5. So, manifold forests are also collec-
tions of clustering trees. However, unlike density forests, the manifold
forest model requires extra components such as an a�nity model and
an e�cient algorithm for estimating the optimal mapping f . Details are
described next.

The training objective function. Using randomized node opti-
mization, training happens by maximizing a continuous information
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Fig. 6.1: Manifold learning and dimensionality reduction. (a)
Input, unlabelled data points are denoted with circles. They live in
a high-dimensional space (here d = 2 for illustration clarity). A red
outline highlights some selected points of interest. (b) The target space
is much lower dimensionality (here d0 = 1 for illustration). Geodesic
distances and ordering are preserved.
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The previous chapter has discussed properties and advantages of (6.1).

The predictor model. Like in the density model the statistics of all
training points arriving at each leaf node is summarized with a single
multi-variate Gaussian:

p
t

(v) =
⇡
l(v)

Z
t

N (v;µ
l(v), ⇤l(v)).

The a�nity model. Unlike other tasks, in manifold learning we
need to estimate some measure of similarity or distance between data
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points so that we can preserve those inter-point distances after the
mapping. When working with complex data in high dimensional spaces
it is important for this a�nity model to be as e�cient as possible. Here
we introduce another novel contribution. We use decision forests to
define data a�nity in a simple and e↵ective way.

As seen in the previous chapter, at its leaves a clustering tree t

defines a partition of the input points

l(v) : Rd ! L ⇢ N

with l a leaf index and L the set of all leaves in a given tree (the tree
index is not shown to avoid cluttering the notation). For a clustering
tree t we can compute the k⇥k points’ a�nity matrix Wt with elements

Wt
ij

= e�D

t

(v
i

,v
j

). (6.2)

The matrix Wt can be thought of as un-normalized transition probabili-
ties in Markov random walks defined on a fully connected graph (where
each data point corresponds to a node). The distance D can be defined
in di↵erent ways. For example:
Mahalanobis a�nity
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(6.3)

Gaussian a�nity
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1 otherwise

(6.4)

Binary a�nity
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1 otherwise

(6.5)

where d
ij

= v
i

�v
j

, and ⇤
l(v

i

)

is the covariance matrix associated with
the leaf reached by the point v

i

. Note that in all cases it is not neces-
sary to compute the partition function Z

t

. More complex probabilistic
models of a�nity may also be used.
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The simplest and most interesting model of a�nity in the list above
is the binary one. It can be thought of as a special case of the Gaussian
model with the length parameter ✏ ! 1. Thus the binary a�nity
model is parameter-free. It says that given a tree t and two points
v
i

and v
j

we assign perfect a�nity (a�nity=1, distance=0) to those
points if they end up in the same cluster (leaf) and null a�nity (infinite
distance) otherwise.

The crucial aspect of manifold forests is that information-theoretical
objective function maximization leads to a natural definition of point
neighborhoods and similarities. In fact, defining appropriate data
neighborhoods is an important problem in many manifold learning algo-
rithms as it is crucial for defining good approximations to the pairwise
geodesic distances. In data intensive applications using an information-
gain objective is more natural than having to design pairwise distances
between complex data points.

The ensemble model. In Laplacian eigenmaps [4] constructing an
a�nity matrix of the type in (6.2) is the first step. Then, spectral
analysis of the a�nity matrix produces the desired mapping f . However,
for a single randomly trained tree its a�nity matrix is not going to
be representative of the correct pairwise point a�nities. This is true
especially if binary a�nity is employed. However, having a collection of
random trees enables us to collect evidence from the entire ensemble.
This has the e↵ect of producing a smooth forest a�nity matrix even
in the presence of a parameter-free binary a�nity model. Once again,
the use of randomness is key here.

More formally, in a forest of T trees its a�nity matrix is defined as:

W =
1

T

TX

t=1

Wt. (6.6)

In a given tree two points may not belong to the same cluster. In some
other tree they do. The averaging operation in (6.6) has the e↵ect of
propagating pairwise a�nities across the graph of all points.

Having discussed how to use forests for computing the data a�nity
matrix (i.e. building the graph), next we proceed with the actual esti-
mation of the mapping function f(·). This second part is based on the



6.2. Specializing the forest model for manifold learning 101

well known Laplacian eigen-maps technique [4, 62] which we summarize
here for convenience.

Estimating the embedding function. A low dimensional embed-
ding is now found by simple linear algebra. Given a graph whose nodes
are the input points and its a�nity matrix W we first construct the k⇥k

normalized graph-Laplacian matrix as:

L = I� ⌥�
1
2W⌥�

1
2 (6.7)

with the normalizing diagonal (“degree”) matrix ⌥, such that ⌥
ii

=P
j

W
ij

[18]. Now, the nonlinear mapping f is found via eigen-
decomposition of L. Let e

0

, e
1

, · · · , e
k�1

be the solutions of (6.7) in
increasing order of eigenvalues

Le
0

= �
0

e
0
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We ignore the first eigenvector e
0

as it corresponds to a degenerate
solution (global translation) and use the next d0 << d eigenvectors
(from e

1

to e
d

0) to construct the k ⇥ d0 matrix E as

E =

0

@
| | | | | |
e
1

e
2

· · · e
j

· · · e
d

0

| | | | | |

1

A

with j 2 {1, · · · , d0} indexing the eigenvectors (represented as column
vectors). Finally, mapping a point v

i

2 Rd onto its corresponding point
v0 2 Rd

0
is done simply by reading the ith row of E:

v0
i

= f(v
i

) = (E
i1

, · · · , E
ij

, · · · , E
id

0)> (6.9)

where i 2 {1, · · · , k} indexes the individual points. Note that d0 must
be < k which is easy to achieve as we normally wish to have a small
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target dimensionality d0. In summary, the embedding function f re-
mains implicitly defined by its k corresponding point pairs, through
the eigenvector matrix E. In contrast to existing techniques, here, we
do not need to fine-tune a length parameter or a neighborhood size.
In fact, when using the binary a�nity model the point neighborhood
remains defined automatically by the forest leaves.

Mapping previously unseen points. There may be applications
where after having trained the forest on a given training set, further
data points become available. In order to map the new points to the
corresponding lower dimensional space one may think of retraining the
entire manifold forest from scratch. However, a more e�cient, approx-
imate technique consists in interpolating the point position given the
already available embedding. More formally, given a previously unseen
point v and an already trained manifold forest we wish to find the cor-
responding point v0 in the low dimensional space. The point v0 may be
computed as follows:

v0 =
1

T

X

t

1

⌘t

X

i

⇣
e�D

t

(v,v
i

) f(v
i

)
⌘

with ⌘t =
P

i

e�D

t

(v,v
i

) the normalizing constant and the distance
Dt(·, ·) computed by testing the existing tth tree on v. This interpola-
tion technique works well for points which are somewhat close to the
original training set. Other alternatives are possible.

6.2.1 Properties and advantages.

Let us discuss some properties of manifold forests.

Ensemble clustering for distance estimation. When dealing
with complex data (e.g. images) defining pairwise distances can be
a challenging. Here we avoid that problem since we use directly the
pairwise a�nities defined by the tree structure itself. This is especially
true of the simpler binary a�nity model. The trees and their tests are
automatically optimized from training data with minimal user input.
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As an example, imagine that we have a collection of holiday photos
containing images of beaches, forests and cityscapes (see fig. 6.2). Each
image defines a data point in a high dimensional space. When training
a manifold forest we can imagine that e.g. some trees group all beach
photos in a cluster, all forest photos in a di↵erent leaf and all cityscapes
in yet another leaf. A di↵erent tree, by using di↵erent features may be
mixing some of the forest photos with some of the beach ones (e.g.
because of the many palm trees along the shore), but the cityscape are
visually very distinct and will tend to remain (mostly) in a separate
cluster. So, forests and beach scenes are more likely to end up in the
same leaf while building photos do not tend to mix with other classes
(just an example). Therefore, the matrix (6.6) will assign higher a�nity
(smaller distance) to a forest-beach image pair than to a beach-city
pair. This shows how an ensemble of multiple hard clusterings can
yield a soft distance measure.

Choosing the feature space. An issue with manifold learning tech-
niques is that often one needs to decide ahead of time how to represent
each data point. For instance one has to decide its dimensionality and
what features to use. Thinking of the practical computer vision prob-
lem of learning manifolds of images the complexity of this problem
becomes apparent.

One potential advantage of manifold forests is that we do not need
to specify manually the features to use. We can define the generic family

of features (e.g. gradients, Haar wavelent, output of filter banks etc.).
Then the tree training process will automatically select optimal features
and corresponding parameters for each node of the forest, so as to
optimize a well defined objective function (a clustering information
gain in this case). For instance, in the illustrative example in fig. 6.2
as features we could use averages of pixel colours within rectangles
placed within the image frame. Position and size of the rectangles is
selected during training. This would allow the system to learn e.g. that
brown-coloured regions are expected towards the bottom of the image
for beach scenes, long vertical edges are expected in cityscapes etc.
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Fig. 6.2: Image similarity via ensemble clustering. Di↵er-
ent trees (whose leaves are denoted by di↵erent colour curves)
induce di↵erent image partitions. The red tree yields the parti-
tion {{a, b, c, d}, {e, f}, {g, h}}. The green tree yields the partition
{{a, b, c}, {d, e, f}, {g, h}}. The overlap between clusters in di↵erent
trees is captured mathematically by the forest a�nity matrix W. In W we
will have that image e is closer to image c than to image g. Therefore,
ensemble-based clustering induces data a�nity. See text for details.

Computational e�ciency. In this algorithm the bottleneck is the
solution of the eigen-system (6.7) which could be slow for a large num-
ber of input points k. However, in (6.9) only the d0 << k bottom eigen-
vectors are necessary. This, in conjunction with the fact that the matrix
L is usually very sparse (especially for the binary a�nity model) can
yield e�cient implementations. Please note that only one eigen-system



6.3. Experiments and the e↵ect of model parameters 105

needs be solved, independent from the forest size T . On the other hand
all the tree-based a�nity matrices Wt may be computed in parallel.

Estimating the target intrinsic dimensionality. The algorithm
above can be applied for any dimensionality d0 of the target space. If we
do not know d0 in advance (e.g. from application-specific knowledge)
an optimal value can be chosen by looking at the profile of (ordered)
eigenvalues �

j

and choosing the minimum number of eigenvalues cor-
responding to a sharp elbow in such profile [4]. Here we need to make
clear that being able to estimate automatically the manifold dimen-
sionality is a property shared with other spectral techniques and is not
unique to manifold forests. This idea will be tested in some examples
at the end of the chapter.

6.3 Experiments and the e↵ect of model parameters

This section presents some experiments and studies the e↵ect of the
manifold forest parameters on the accuracy of the estimated non-linear
mapping.

6.3.1 The e↵ect of the forest size

We begin by discussing the e↵ect of the forest size parameter T . In
a forest of size T each randomly trained clustering tree produces a
di↵erent, disjoint partition of the data.1 In the case of a binary a�nity
model the elements of the a�nity matrices Wt are binary (2 {0, 1},
either two points belong to the same leaf/cluster or not). A given pair
of points will belong to the same cluster (leaf) in some trees and not in
others (see fig. 6.3). Via the ensemble model the forest a�nity matrix
W is much smoother since multiple trees enable di↵erent point pairs to
exchange information about their relative position. Even if we use the
binary a�nity case the forest a�nity W is in general not binary. Large
forests (large values of T ) correspond to averaging many tree a�nity
matrices together. In turn, this produces robust estimation of pairwise

1
If the input points were reordered correctly for each tree we would obtain an a�nity matrix

Wt with block-diagonal structure.



106 Manifold forests

Fig. 6.3: Di↵erent clusterings induced by di↵erent trees. (a)
The input data in 2D. (b,c,d) Di↵erent partitions learned by di↵erent
random trees in the same manifold forest. A given pair of points will
belong to the same cluster (leaf) in some trees and not in others.

a�nities even between distant pairs of points.
Figure 6.4 shows two examples of nonlinear dimensionality reduc-

tion. In each experiment we are given some noisy, unlabelled 2D points
distributed according to some underlying nonlinear 1D manifold. We
wish to discover the manifold and map those points onto a 1D real axis
while preserving their relative geodesic distances. The figure shows that
when using a very small number of trees such mapping does not work
well. This is illustrated e.g. in fig. 6.4b-leftmost, by the vertical banding
artifacts; and in fig. 6.4d-leftmost by the single red colour for all points.
However, as the number of trees the a�nity matrix W better represents
the true pairwise graph a�nity. Consequently the colour coding (lin-
early going from dark blue to dark red) starts to follow correctly the
1D evolution of the points.

6.3.2 The e↵ect of the a�nity model

Here we discuss advantages and disadvantages of using di↵erent a�n-
ity models. Binary a�nities (6.5) are extremely fast to compute and
avoid the need to define explicit distances between (possibly complex)
data points. For example defining a sensible distance metric between
images is di�cult. With our binary model pairwise a�nities are defined
implicitly by the hierarchical structure of the trees.

Figure 6.5 compares the binary and Gaussian a�nity models in a
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Fig. 6.4: Manifold forest and non-linear dimensionality reduc-
tion. The e↵ect of T . (a,c) Input 2D points for two di↵erent syn-
thetic experiments. (b,d) Non-linear mapping from the original 2D
space to the 1D real line is colour coded, from dark red to dark blue.
In both examples a small forest (small T ) does not capture correctly
the intrinsic 1D manifold. For larger values of T (e.g. T = 100) the
accuracy of such a mapping increases. (e) The colour legend. Di↵erent
colours, from red to blue, denote the position of the mapped points in
their target 1D space.

synthetic example. The input points are embedded within a 3D space
with their intrinsic manifold being a 2D rectangle. A small number of
trees in both cases produces a roughly triangular manifold, but as T

increases the output manifold becomes more rectangular shaped. Notice
that our model preserves local distances only. This is not su�cient to
reproduce sharp 90-degree angles (see rightmost column in fig. 6.5).
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Fig. 6.5: The e↵ect of the similarity model. In this experiment we
map 3D points into their intrinsic 2D manifold. (a) The input 3D data
is a variant of the well known “Swiss Roll” dataset. The noisy points
are organized as a spiral in one plane with a sinusoidal component in
the orthogonal direction. (c) Di↵erent mappings into the 2D plane for
increasing forest size T . Here we use binary a�nity. (d) As above but
with a Gaussian a�nity model. A su�ciently large forest manages to
capture the roughly rectangular shape of the embedded manifold. For
this experiment we used max forest size T = 100, D = 4 and weak
learner = oriented hyperplane (linear).

For a su�ciently large forest both models do a reasonable job at re-
organizing the data points on the target flat surface.

Figure 6.6 shows three views of the “Swiss Roll” example from dif-
ferent viewpoints. Its 3D points are colour-coded by the discovered un-
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Fig. 6.6: The “Swiss Roll” manifold. Di↵erent 3D views from vari-
ous viewpoints. Colour-coding indicates the mapped 2D manifold. See
colour-legend in fig. 6.5.

derlying 2D manifold. The mapped colours confirm the roughly correct
2D mapping of the original points. In our experiments we have observed
that the binary model converges (with T ) more slowly than the Gaus-
sian model, but with clear advantages in terms of speed. Furthermore,
the length parameter ✏ in (6.4) may be di�cult to set appropriately
(because it has no immediate interpretation) for complex data such
as images (see fig. 6.2). Therefore, a model which avoids this step is
advantageous.

Figure 6.7 shows a final example of a 3D space being mapped onto
the underlying planar manifold. Once again binary a�nities were used
here.

6.3.3 Discovering the manifold intrinsic dimensionality

We conclude this chapter by investigating how we can choose the opti-
mal dimensionality of the target space. In terms of accuracy it is easy
to see that a value of d0 identical to the dimensionality of the original
space would produce the best results because there would be no loss
of information. But one criterion for choosing d0 is to drastically re-
duce the complexity of the target space. Thus we definitely wish to use
small values of d0. By plotting the (ordered) eigenvalues it is also clear
that there are specific dimensionalities at which the spectrum presents
sharp changes [4]. This indicates that there are values of d0 such that
if we used d0 + 1 we would not gain very much. These special loci can
be used to define “good” values for the target dimensionality.
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Fig. 6.7:The “Christmas Tree” manifold. (a) The unlabelled input
data points in their 3D space. (b) The reconstructed 2D space. (c) The
2D colour legend. (d,e,f) Di↵erent views of the 3D points with colour
coding corresponding to the automatically discovered 2D mapping.

Figure 6.8 plots the eigenvalue spectra for the “Swiss Roll” dataset
and the binary and Gaussian a�nity models, respectively. As expected
from theory �

0

= 0 (corresponding to a translation component that we
ignore). The sharp elbow in the curves, corresponding to �

2

indicates
an intrinsic dimensionality d = 2 (correct) for this example. In our
experiments we have observed that higher values of T produce a more
prominent elbow in the spectrum and thus a clearer choice for the value
of d. Similarly, Gaussian a�nities produce sharper elbows than binary
a�nities.

6.3.4 Discussion

Above we have discussed some of the advantages of manifold forests
and have studies the e↵ects of its parameters. For example we have
seen that manifold forests can be e�cient, avoid the need to prede-
fine the features to be used, and can provide guidance with respect to
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Fig. 6.8: Discovering the manifold intrinsic dimensionality. (a)
The sorted eigenvalues of the normalized graph Laplacian for the “Swiss
Roll” 3D example, with binary a�nity model. (b) As above but with
Gaussian a�nity. In both curves there is a clear elbow in correspon-
dence of �

2

thus indicating an intrinsic dimensionality d0 = 2. Here we
used forest size T = 100, D = 4 and weak learner = linear.

the optimal dimensionality of the target space. On the flip side it is
important to choose the forest depth D carefully, as this parameter in-
fluences the number of clusters in which the data is partitioned and, in
turn, the smoothness of the recovered mapping. In contrast to existing
techniques here we also need to choose a weak-learner model to guide
the way in which di↵erent clusters are separated. The forest size T is
not a crucial parameter since, as usual, the more trees the better the
behaviour.

The fact that the same decision forest model can be used for man-
ifold learning and nonlinear dimensionality reduction is an interesting
discovery. This chapter has only presented the manifold forest model
and some basic intuitions. However, a more thorough experimental val-
idation with real data is necessary to fully assess the validity of such
model. Next, we discuss a natural continuation of the supervised and
unsupervised models discussed so far, and their use in semi-supervised
learning.



7
Semi-supervised forests

Previous chapters have discussed the use of decision forests in super-
vised problems (e.g. regression and classification) as well as unsuper-
vised ones (e.g. density and manifold estimation). This chapter puts
the two things together to achieve semi-supervised learning. We focus
here on semi-supervised classification but the results can be extended
to regression too.

In semi-supervised classification we have available a small set of
labelled training points and a large set on unlabelled ones. This is a
typical situation in many scenarios. For instance, in medical image anal-
ysis getting hold of numerous anonymized patients scans is relatively
easy and cheap. However, labeling them with ground-truth annotations
requires experts time and e↵ort and thus is very expensive. A key ques-
tion then is if we can exploit the existence of unlabelled data to improve
classification.

Semi-supervised machine learning is interested in the problem of
transferring existing ground-truth labels to the unlabelled (and already
available) data. When in order to solve this problem we make use of
the underlying data distribution then we talk of transductive learning.
This is in contrast with the inductive learning already encountered in

112
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previous chapters (chapters 3 and 4), where the test data is not available
at training time. This chapter focuses on transductive classification
and also revisits the inductive process in the light of its transductive
counterpart. Decision forests can address both tasks accurately and
e�ciently.

Intuitively, in transductive classification we wish to separate the
data so as to: (i) keep di↵erent known class labels in di↵erent regions
and, (ii) make sure that classification boundaries go through areas of
low data density. Thus, it is necessary to borrow concepts from both
supervised classification and density estimation.

After a brief literature survey, we show how to adapt the generic for-
est model to do transductive semi-supervised classification. This chap-
ter also shows how, given a transductive forest we can easily upgrade it
to a general inductive classification function for previously unseen test
data. Numerous examples and comparative experiments illustrate ad-
vantages and disadvantages of semi-supervised forests over alternative
popular algorithms. The use of decision forests for the related active

learning task is also briefly mentioned.

7.1 Literature on semi-supervised learning

A popular technique for semi-supervised learning is transductive sup-
port vector machines [47, 101]. Transductive SVM (TSVM) is an ex-
tension of the popular support vector machine algorithm [97] which
maximizes the separation of both labelled and unlabelled data. The
experimental section of this chapter will present comparisons between
forests and TSVM.

Excellent, recent references for semi-supervised learning and active
learning are [18, 19, 91, 104] which provide a nice structure to the vast
amount of literature on these topics. A thorough literature survey is
well beyond the scope of this paper and here we focus on forest-based
models.

In [52] the authors discuss the use of decision forests for semi-
supervised learning. They achieve this via an iterative, deterministic
annealing optimization. Tree-based semi-supervised techniques for vi-
sion and medical applications are presented in [13, 17, 27]. Here we
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introduce a new, simple and e�cient, one-shot semi-supervised forest
algorithm.

7.2 Specializing the decision forest model for semi-
supervised classification

This section specializes the generic forest model introduced in chap-
ter 2 for use in semi-supervised classification. This model can also be
extended to semi-supervised regression though this is not discussed
here.

Problem statement. The transductive classification task is summa-
rized here as follows:

Given a set of both labelled and unlabelled data we wish to as-

sociate a class label to all the unlabelled data.

Unlike inductive classification here all unlabelled “test” data is al-
ready available during training.

The desired output (and consequently the training labels) are of
discrete, categorical type (unordered). More formally, given an input
point v we wish to associate a class label c such that c 2 {c

k

}. As usual
the input is represented as a multi-dimensional feature response vector
v = (x

1

, · · · , x
d

) 2 Rd.
Here we consider two types of input data: labelled vl 2 L and

unlabelled vu 2 U . This is illustrated in fig. 7.1a, where data points
are denoted with circles. Coloured circles indicate labelled training
points, with di↵erent colours denoting di↵erent labels. Unlabelled data
is shown in grey. Figures 7.1b,c further illustrate the di↵erence between
transductive and inductive classification.

What are semi-supervised forests? A transductive forest is a col-
lection of trees that have been trained on partially labelled data. Both
labelled and unlabelled data are used to optimize an objective func-
tion with two components: a supervised and an unsupervised one, as
described next.
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Fig. 7.1: Semi-supervised forest: input data and problem state-
ment. (a) Partially labelled input data points in their two-dimensional
feature space. Di↵erent colours denote di↵erent labels. Unlabelled data
is shown in grey. (b) In transductive learning we wish to propagate
the existing ground-truth labels to the many, available unlabelled data
points. (c) In inductive learning we wish to learn a generic function
that can be applied to previously unavailable test points (grey circles).
Training a conventional classifier on the labelled data only would pro-
duce a sub-optimal classification surface, i.e. a vertical line in this case.
Decision forests can e↵ectively address both transduction and induc-
tion. See text for detail.

The training objective function. As usual, forest training hap-
pens by optimizing the parameters of each internal node j via

✓⇤
j

= arg max
✓

j

2T
j

I
j

Di↵erent trees are trained separately and independently. The main dif-
ference with respect to other forests is that here the objective function
I
j

must encourage both separation of the labelled training data as well
as separating di↵erent high density regions from one another. This is
achieved via the following mixed information gain:

I
j

= Iu
j

+ ↵Is
j

. (7.1)

In the equation above Is
j

is a supervised term and depends only on
the labelled training data. In contrast, Iu

j

is the unsupervised term and
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depends on all data, both labelled and unlabelled. The scalar parameter
↵ is user defined and it specifies the relative weight between the two
terms.

As in conventional classification, the term Is
j

is an information gain
defined over discrete class distributions:

Is
j

= H(S
j

)�
X

i2{L,R}

|Si

j

|
|S

j

|H(Si

j

) (7.2)

with the entropy for a subset S ✓ L of training points H(S) =
�
P

c

p(c) log p(c) with c the ground truth class labels of the points
in L.

Similarly, as in density estimation, the unsupervised gain term Iu
j

is defined via di↵erential entropies defined over continuous parameters
(i.e. the parameters of the Gaussian associated with each cluster):

Iu
j

= log |⇤(S
j

)|�
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i
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)| (7.3)

for all points in S
j

✓ (U [ L). Like in chapter 5 we have made the
working assumption of Gaussian node densities.

The ensemble model. During testing, a semi-supervised classifica-
tion trees t yields as output the posterior p

t

(c|v). Here we think of the
input point v as already available during training (v 2 U , for trans-
duction) or previously unseen (for induction). The forest output is the
usual posterior mean:

p(c|v) = 1

T

TX

t

p
t

(c|v).

Having described the basic model components next we discuss details
of the corresponding label propagation algorithm.

7.3 Label propagation in transduction forest

This section explains tree-based transductive label propagation. Fig-
ure 7.2 shows an illustrative example. We are given a partially labelled
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Fig. 7.2: Label transduction in semi-supervised forests. (a) In-
put points, only four of which are labelled as belonging to two classes
(red and yellow). (b,c,d) Di↵erent transductive trees produce di↵erent
partitions of the feature space. Di↵erent regions of high data density
tend to be separated by cluster boundaries. Geodesic optimization en-
ables assigning labels to the originally unlabelled points. Points in the
central region (away from original ground-truth labels) tend to have
less stable assignments. In the context of the entire forest this captures
uncertainty of transductive assignments. (e,f,g) Di↵erent tree-induced
partitions correspond to di↵erent Gaussian Mixture models. (h) Label
propagation via geodesic path assignment.

dataset (as in fig. 7.2a) which we use to train a transductive forest of
size T and maximum depth D by maximizing the mixed information
gain (7.1).

Di↵erent trees produce randomly di↵erent partitions of the feature
space as shown in fig. 7.2b,c,d. The di↵erent coloured regions repre-
sent di↵erent clusters (leaves) in each of the three partitions. If we use
Gaussian models then each leaf stores a di↵erent Gaussian distribution
learned by maximum likelihood for the points within. Label transduc-
tion from annotated data to unannotated data can be achieved directly
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via the following minimization:

c(vu) ( c

✓
arg min

vl2L
D(vu,vl)

◆
8 vu 2 U . (7.4)

The function c(·) indicates the class index associated with a point
(known in advance only for points in L). The generic geodesic distance
D(·, ·) is defined as

D(vu,vl) = min
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with � a geodesic path (here represented as a discrete collection of
points), L(�) its length, {�} the set of all possible geodesic paths and
the initial and end points s
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= vl, respectively. The local
distances d(·, ·) are defined as symmetric Mahalanobis distances
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the covariance associated with the leaf
reached by the point v

i

. Figure 7.2h shows an illustration. Using Maha-
lanobis local distances (as opposed to e.g. Euclidean ones) discourages
paths from cutting across regions of low data density, a key require-
ment for semi-supervised learning.1 In e↵ect we have defined geodesics
on the space defined by the automatically inferred probability density
function.

Some example results of label propagation are shown in fig. 7.2b,c,d.
Figures 7.2e,f,g illustrate the corresponding Gaussian clusters associ-
ated with the leaves. Following label transduction (7.4) all unlabelled
points remain associated with one of the two labels (fig. 7.2b,c,d). Note
that such transducted labels are di↵erent for each tree, and they are
more stable for points closer to the original labelled data. When look-
ing at the entire forest this yields uncertainty in the newly obtained
labels. Thus, in contrast to some other transductive learning algorithms

1
Since all leaves are associated with the same Gaussian the label propagation algorithm can

be implemented very e�ciently by acting on each leaf cluster rather than on individual

points. Very e�cient geodesic distance transform algorithms exist [22].
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a semi-supervised forest produces a probabilistic transductive output
p(c|vu).

Usually, once transductive label propagation has been achieved one
may think of using the newly labelled data as ground-truth and train
a conventional classifier to come up with a general, inductive classifi-
cation function. Next we show how we can avoid this second step and
go directly from transduction to induction without further training.

7.4 Induction from transduction

Previously we have described how to propagate class labels from la-
belled training points to already available unlabelled ones. Here we
describe how to infer a general probabilistic classification rule p(c|v)
that may be applied to previously unseen test input (v 62 U [ L).

We have two alternatives. First, we could apply the geodesic-based
algorithm in (7.4) to every test input. But this involves T shortest-
path searches for each v. A simpler alternative involves constructing
an inductive posterior from the existing trees, as shown next.

After transduction forest training we are left with T trained trees
and their corresponding partitions (fig. 7.2b,c,d). After label propa-
gation we also have attached a class label to all available data (with
di↵erent trees possibly assigning di↵erent classes to the points in U).
Now, just like in classification, counting the examples of each class ar-
riving at each leaf defines the tree posteriors p

t

(c|v). These act upon
the entire feature space in which a point v lives and not just the already
available training points. Therefore, the inductive forest class posterior
is the familiar

p(c|v) = 1

T

TX

t=1

p
t

(c|v).

Here we stress again that the tree posteriors are learned from all (exist-
ing and transducted) class labels ignoring possible instabilities in class
assignments. We also highlight that building the inductive posterior is
extremely e�cient (it involves counting) and does not require training
a whole new classifier.

Figure 7.3 shows classification results on the same example as in
fig. 7.2. Now the inductive classification posterior is tested on all points
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Fig. 7.3: Learning a generic, inductive classification rule. Output
classification posteriors, tested on all points in a rectangular section of
the feature space. Labelled training points are indicated by coloured
circles (only four of those per image). Available unlabelled data are
shown by small grey squares. Note that a purely inductive classification
function would separate the left and right sides of the feature space
with a vertical line. In contrast here the separating surface is “S”-
shaped because a↵ected by the density of the unlabelled points, thus
demonstrating the validity of the use of unlabelled data densities. From
left to right the number of trees in the forest increases from T = 1 to
T = 100. See text for details.

within a rectangular section of the feature space. As expected a larger
T produces smoother posteriors. Note also how the inferred separat-
ing surface is “S”-shaped because it takes into account the unlabelled
points (small grey squares). Finally we observe that classification un-
certainty is greater in the middle due to its increased distance from the
four ground-truth labelled points (yellow and red circles).

Discussion. In summary, by using our mixed information gain and
some geodesic manipulation the generic decision forest model can
be readily adapted for use in semi-supervised tasks. Semi-supervised
forests can be used both for transduction and (refined) induction with-
out the need for a two-stage training procedure. Further e�ciency is
due to the parallel nature of forests. Both for transduction and induc-
tion the output is fully probabilistic. We should also highlight that
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semi-supervised forests are very di↵erent from e.g. self-training tech-
niques [75]. Self-training techniques work by: (i) training a supervised
classifier, (ii) classifying the unlabelled data, (iii) using the newly clas-
sified data (or perhaps only the most confident subset) to train a new
classifier, and so on. In contrast, semi-supervised forests are not iter-
ative. Additionally, they are driven by a clear objective function, the
maximization of which encourages the separating surface to go through
regions of low data density, while respecting existing ground-truth an-
notations.

Next we present further properties of semi-supervised forests (such
as their ability to deal with any number of classes) with toy examples
and comparisons with alternative algorithms.

7.5 Examples, comparisons and e↵ect of model parameters

This section studies the e↵ect of the forest model parameters on its ac-
curacy and generalization. The presented illustrative examples are de-
signed to bring to life di↵erent properties. Comparisons between semi-
supervised forests with alternatives such as transductive support vector
machines are also presented.

Figure 7.3 has already illustrated the e↵ect of the presence of un-
labelled data as well as the e↵ect of increasing the forest size T on the
shape and smoothness of the posterior. Next we discuss the e↵ect of
increasing the labelled points.

The e↵ect of additional labelled data and active learning. As
observed already, the central region in fig. 7.4a shows higher classifi-
cation uncertainty (dimmer, more orange pixels). Thus, as typical of
active learning [14] we might decide to collect and label additional data
precisely in those low-confidence regions. This should have the e↵ect of
refining the classification posterior and increasing it confidence. This
e↵ect is indeed illustrated in fig. 7.4b.

As expected, a guided addition of further labelled data in regions of
high uncertainty increases the overall predictor confidence. The impor-
tance of having a probabilistic output is clear here as it is the confidence
of the prediction (and not the class prediction itself) which guides, in
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Fig. 7.4: Active learning. (a) Test forest posterior trained with only
four labelled points and hundreds of unlabelled ones. The middle re-
gion shows lower confidence (pointed at by two arrows). (b) As before,
but with two additional labelled points placed in regions of high un-
certainty. The overall confidence of the classifier increases considerably
and the overall posterior is sharper. Figure best seen on screen.

an economical way, the collection of additional training data. Next we
compare semi-supervised forests with alternative algorithms.

Comparison with support vector machines. Figure 7.5 shows a
comparison between semi-supervised forests and conventional SVM [97]
as well as transductive SVM [47, 101], on the same two input datasets. 2

In the figure we observe a number of e↵ects. First, unlike SVM
the forest captures uncertainty. As expected, more noise in the input
data (either in the labelled or unlabelled sets, or both) is reflected in
lower prediction confidence. Second, while transductive SVM manages
to exploit the presence of available unlabelled data it still produces a
hard, binary classification. For instance, larger amounts of noise in the
training data is not reflected in the TSVM separating surface.

2
In this example the SVM and transductive SVM results were generated using the “SVM-

light” Matlab toolbox in http://svmlight.joachims.org/.
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Fig. 7.5: Comparing semi-supervised forests with SVM and
transductive SVM. (a) Input partially labelled data points. (b)
Semi-supervised forest classification posterior. The probabilistic out-
put captures prediction uncertainty (mixed-colour pixels in the central
region). (c) Unsurprisingly, conventional SVM produces a vertical sep-
arating surface and it is not a↵ected by the unlabelled set. (d) Trans-
ductive SVM follows regions of low density, but still does not capture
uncertainty. (a’) As in (a) but with larger noise in the point positions.
(b’) The increased input noise is reflected in lower overall confidence
in the forest prediction. (c’,d’) as (c) and (d), respectively, but run on
the noisier training set (a’).

Handling multiple classes. Being tree-based models semi-
supervised forests can natively handle multiple (> 2) classes. This is
demonstrated in fig. 7.6 with a four-class synthetic experiment. The
input points are randomly drawn from four bi-variate Gaussians. Out
of hundreds of points only four are labelled with their respective classes
(shown in di↵erent colours). Conventional one-v-all SVM classification
results in hard class assignments (fig. 7.6b). Tree-based transductive la-
bel propagation (for a single tree) is shown in fig. 7.6c. Note that slightly
di↵erent assignments are achieved for di↵erent trees. The forest-based
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Fig. 7.6: Handling multiple classes. (a) Partially labelled input
data. We have 4 labelled points for the 4 classes (di↵erent colours for
di↵erent classes). (b) Classification results for one-v-all support vec-
tor machines. (c) Transduction results based on a single decision tree.
Originally unlabelled points are assigned a label based on tree-induced
geodesic distances. (d) Final semi-supervised classification posterior.
Unlabelled points nicely contribute to the shape of the posterior (e.g.
look at the elongated yellow blob). Furthermore, regions of low confi-
dence nicely overlap regions of low data density.

inductive posterior (computed for T = 100) is shown in fig. 7.6d where
the contribution of previously unlabelled points to the shape of the final
posterior is clear. Regions of low confidence in the posterior correspond
to regions of low density.
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Fig. 7.7: Semi-supervised forest: e↵ect of depth. (a) Input la-
belled and unlabelled points. We have 4 labelled points and 4 classes
(colour coded). (a’) As in (a) but with double the labelled data. (b,b’)
Semi-supervised forest classification posterior for D = 6 tree levels.
(c,c’) Semi-supervised forest classification posterior for D = 10 tree
levels. The best results are obtained in (c’), with largest amount of
labelled data and deepest trees.

The e↵ect of tree depth. We conclude this chapter by studying
the e↵ect of the depth parameter D in fig. 7.7. The figure shows two
four-class examples. The input data is distributed according to four-
arm spirals. In the top row we have only four labelled points. In the
bottom row we have eight. Similar to classification forests, increasing
the depth D from 6 to 10 produces more accurate and confident results.
And so does increasing the amount of labelled data. In this relatively
complex example, accurate and sharp classification is achieved with
just 2⇥ 4 labelled data points (for D = 10 tree levels) and hundreds of
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unlabelled ones.
The recent popularity of decision forests has meant an explosion of

di↵erent variants in the literature. Although collecting and categorizing
all of them is a nearly impossible task, in the next chapter we discuss
a few important ones.



8
Random ferns and other forest variants

This chapter describes some of the many variants on decision forests
that have emerged in the last few years. Many such variations can be
seen as special instances of the same general forest model. Specifically
here we focus on: random ferns, extremely randomized trees, entangled
forests, online training and the use of forests on random fields.

8.1 Extremely randomized trees

Extremely randomized trees (ERT) are ensembles of randomly trained
trees where the optimization of each node parameters has been greatly
reduced or even removed altogether [36, 61].

In our decision model the amount of randomness in the selec-
tion/optimization of split nodes is controlled by the parameter ⇢ = |T

j

|
(section 2.2). In our randomized node optimization model when train-
ing the jth internal node the set T

j

is selected at random from the entire
set of possible parameters T . Then optimal parameters are chosen only
within the T

j

subset. Consequently, extremely randomized trees are a
specific instance of the general decision forest model with the additional
constraint that ⇢ = 1 8j. In this case no node training is performed.
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Fig. 8.1: Forests, extremely randomized trees and ferns. (a)
Input training points for four classes. (b) Posterior of a classification
forest. (c) Posterior of an ensemble of extremely randomized trees. (d)
Posterior of a random fern. The randomness parameter is changed as
illustrated. All other parameters are kept fixed. Extremely randomized
trees are faster to train than forests but produce a lower-confidence
posterior (in this example). The additional constraints of random ferns
yield further loss of posterior confidence.

Figure 8.1 shows a comparison between classification forests and
extremely randomized trees for a toy example. Some training points
belonging to four di↵erent classes are randomly distributed along four
spiral arms. Two decision forests were trained on the data. One of
them with ⇢ = 1000 and another with ⇢ = 1 (extremely random-
ized). All other parameters are kept identical (T = 200, D = 13, weak
learner = conic section, predictor = probabilistic). The corresponding
testing posteriors are shown in fig. 8.1b, and fig. 8.1c, respectively. It
can be observed that the increased randomness produces lower overall
prediction confidence. Algorithmically higher randomness yields slower
convergence of test error as a function of the forest size T .

8.2 Random ferns

Random ferns can also be thought of as a specific case of decision
forests. In this case the additional constraint is that the same test
parameters are used in all nodes of the same tree level [66, 68].

Figure 8.2 illustrates this point. As usual training points are indi-
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cated with coloured circles with di↵erent colours indicating di↵erent
classes. In both a decision tree and a decision fern the first node (root)
does an equally good job at splitting the training data into two sub-
set. Here we consider only axis-aligned weak learners. In this example
going to the next level starts to show the di↵erence between the two
models (fig. 8.2d). The fact that all parameters ✓ of all nodes in the
same level are identical induces partitions of the feature space with
complete hyper-surfaces (as opposed to the “half-surfaces” used by the
forest, see fig. 8.2d,e). Consequently, in order to split exactly the lin-
early separable input dataset the fern requires deeper levels than the
forest. This explains why in fig. 8.1c we see lower prediction confidence
(very washed-out colours) as compared to extremely randomized trees
or full forests.

The fact that extremely randomized trees and random ferns are
lower-parametric versions of decision forests can be an advantage in
some situations. For instance, in the presence of limited training data
ERT and ferns run less risk of overfitting than forests. Thus, as usual
the best optimal model to use depends on the application at hand.

8.3 Online forest training

One of the advantages of decision forests is that thanks to their paral-
lelism they are e�cient both during training and testing. Most of the
time they are used in an o↵-line way, i.e. they are trained on a training
data and then tested on previously unseen test data. The entirety of
the training data is assumed given in advance. However, there are many
situations where the labelled training data may be arriving at di↵erent
points in time. In such cases it is convenient to be able to update the
learned forest quickly, without having to start training from scratch.
This second mode of training is often referred to as on-line training.

Given a forest trained on a starting training set, the simplest form
of on-line training is that of keeping the learned parameters and forest
structure fixed and only update the leaf distributions. As new training
data is available it can be simply “pushed through” all trees until it
reaches the corresponding leaves. Then, the corresponding distributions
(e.g. unnormalized histograms) can be quickly updated (e.g. by sim-
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Fig. 8.2: Forests and ferns. A set of labelled training data is used
to train a forest and a fern. Here simple axis-aligned weak learners are
employed. A fern has fewer parameters than the forest and thus the
fern typically requires deeper trees than a forest to split equally well
the input training data.

ply adding the new counts in the appropriate bins). The work in [77]
presents further details.

8.4 Structured-output Forests

Often decision forests are used for the semantic segmentation of images.
This involves assigning a class posterior to each pixel (voxel) in the im-
age domain (e.g. in Microsoft Kinect). However, such class decisions
are often made independently for each pixel. Classic Markov random
fields [8] add generic spatial priors to achieve more homogeneous out-
puts by smoothing noisy local evidence. In this section we mention two
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techniques which try to improve on this generic smoothness model and
learn a class-specific model of spatial context.

8.4.1 Entangled forests

Entangled forests [60] are decision forests where the feature vector used
as input to a split node is a function of: (i) the image data and (ii) the
output of previous split nodes in the same tree.

The basic idea stems from the work on Probabilistic Boosting
Trees [95] and autocontext [96]. In the latter the author shows how
a sequence of trees, where each uses the output of the previous tree as
input, yields better results than using a single tree. In fact, each stage
moves us one step closer from the original image data to its “semantic”
meaning.

However, due to their hierarchical structure each tree is composed
of multiple subtrees. So, the idea of taking the output of a tree as input
for the next can also be applied within the same decision tree/forest,
as shown in [60]. In [60] the authors extend the feature pool by using
both image intensities and various combinations of class posteriors ex-
tracted at di↵erent internal nodes in a classification forest. They show
much improved generalization with shallower (and thus more e�cient)
forests. One of the reasons why entangled forests work well is because
of learned, class-specific context. For example, the system learns that
a voxel which is 5cm below the right lung and 5cm above the right
kidney is likely to be in the liver.
Biased randomization. The work in [60] also introduces a variant on
randomized node optimization where the available test parameters T

j

are no longer drawn uniformly from T , but according to a learned pro-
posal distribution. This increases both training e�ciency and testing
accuracy as it reduces the enormous search space (possibly infinite) to
a more manageable subset which is still highly discriminative.

8.4.2 Decision tree fields

Recently, Nowozin et al. [65] proposed another technique for learning
class-specific models of context. They combined random decision forests
and random fields together in a decision tree field model. In this model,
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both the per-pixel likelihoods as well as the spatial smoothing priors are
dependent on the underlying image content. Di↵erent types of pair-wise
weights are learned from images using randomized decision trees. By
using approximate likelihood functions the training of the decision tree
field model remains e�cient, however, the test-time inference requires
the minimization of a random field energy and therefore may prohibit
its use in real-time applications, at present.

8.5 Further forest variants

The “STAR” model in [69] can also be interpreted as a forest of T ,
randomly trained non-binary trees of depth D = 1. The corresponding
training and testing algorithms are computational e�cient. A related
model, made of multiple single nodes is “node harvest” [57]. Node har-
vest has the advantage of high interpretability, but seems to work best
in low signal-to-noise conditions.

This chapter has presented only a small subset of all possible vari-
ants on tree-based machine learning techniques. Further interesting
ones exist, but collecting all of them in the same document is a near
impossible task.



Conclusions

This paper has presented a general model of decision forest and shown
its applicability to various di↵erent tasks including: classification, re-
gression, density estimation, manifold learning, semi-supervised learn-
ing and active learning.

We have presented both a tutorial on known forest-related concepts
as well as a series of novel contributions such as demonstrating margin-
maximizing properties, introducing forest-based density estimation and
manifold forests, and discussing a new algorithm for transductive learn-
ing. Finally, we have studied for the first time the e↵ects of important
forest parameters such as the amount of randomness and the weak
learner model on accuracy.

A key advantage of decision forests is that the associated inference
algorithms can be implemented and optimized once. Yet relatively small
changes to the model enable the user to solve many diverse tasks, de-
pending on the application at hand. Decision forests can be applied to
supervised, unsupervised and semi-supervised tasks.

The feasibility of the decision forest model has been demonstrated
both theoretically and in practice, with synthetic experiments and in
some commercial applications. Whenever possible, forest results have
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been compared directly with well known alternatives such as support
vector machines, boosting and Gaussian processes. Amongst other ad-
vantages, the forest’s intrinsic parallelism and consequent e�ciency are
very attractive for data-heavy practical applications.

Further research is necessary e.g. to figure out optimal ways of in-
corporating priors (e.g. of shape) within the forest and to increase their
generalization further. An interesting avenue that some researchers
have started to pursue is the idea of combining classification and regres-
sion [37]. This can be interesting as the two models can enrich one an-
other. The more exploratory concepts of density forest, semi-supervised
forest and manifold forests presented here need more testing in real ap-
plications to demonstrate their feasibility. We hope that this work can
serve as a springboard for future exciting research to advance the state
of the art in automatic image understanding for medical image analysis
as well as general computer vision.

For further details, animations and demo videos, the interested
reader is encouraged to view the additional material available at [1].



Appendix A – Deriving the regression
information gain

This chapter shows the mathematical derivation leading to the continu-
ous regression information gain measure in (4.2). We start by describing
probabilistic linear regression.

Least squares line regression. For simplicity the following descrip-
tion focuses on fitting a line to a set of 2D points but it can be easily
generalized to hyperplanes in a higher dimensional space. We are given
a set of points (as shown in fig. 3) and we wish to estimate a probabilis-
tic model of the line through those points. A 2D point x is represented
in homogeneous coordinates as x = (x y 1)>. A line in homogeneous
coordinates is written as the 3-vector l = (l

x

l
y

l
w

)>. If a point is
on the line then l · x = 0. Thus, for n points we can setup the linear
system

A l = 0
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with the n⇥ 3 matrix A

A =
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The input points are in general noisy and thus it is not possible to find
the line exactly. As usual in these cases we use the well known least
squares technique where we define a cost function C = l>A>Al to be
minimized while satisfying the constraint ||l|| = 1. The corresponding
Lagrangian is

L = l>A>Al� �(l>l� 1).

Taking the derivative of L and setting it to 0 as follows

@L
@l

= 2A>Al� 2�l = 0

leads to the following eigen-system:

A>Al = �l.

Therefore, the optimal line solution l is the eigenvector of the 3 ⇥ 3
matrix M = A>A corresponding to its minimum eigenvalue.

Estimating the distribution of line parameters. By assuming
noisy training points and employing matrix perturbation theory [21, 89]
we can estimate a Gaussian density of the line parameters: l ⇠ N

�
l, ⇤

l

�
,

as follows.
The generic ith row in the “design” matrix A is a
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Fig. 3:Probabilistic line fitting.Given a set of training points we can
fit a line model to them. For instance, in this example l 2 R2. Matrix
perturbation theory enables us to compute the entire conditional den-
sity p(l|x) from where we can derive p(y|x). Training a regression tree
involves minimizing the uncertainty of the prediction p(y|x). Therefore,
the training objective is a function of �2

y

.

Finally the 3⇥ 3 line covariance matrix is

⇤l = J S J (1)

with the 3⇥ 3 Jacobian matrix

J = �
3X

k=2

u
k

u>
k

�
k

where �
k

denotes the kth eigenvalues of the matrix M and u
k

its corre-
sponding eigenvector. The 3⇥ 3 matrix S in (1) is

S =
nX

i=1

⇣
a>
i

a
i

l>⇤
i

l
⌘
.

Therefore the distribution over l remains completely defined. Now,
given a set of (x, y) pairs we have found the maximum-likelihood line
model N

�
l, ⇤

l

�
. However, what we want is the conditional distribution

p(y|x) (see fig. 3) this is discussed next.
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Estimating the conditional p(y|x). In regression forests we are
given an input point x and the mean and covariance of the line pa-
rameters l for the leaf reached by the input point. The task now is
to estimate of the conditional probability p(y|x). At the end of this
chapter we will see how this is used in the regression information gain.

In its explicit form a line equation is y = a x + b with a = �l
x

/l
y

and b = �l
w

/l
y

. Thus we can define l0 = (a b)> with

l0 = f(l) =

✓
�l
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/l
y

�l
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/l
y

◆
.

Its 2⇥ 2 covariance is then ⇤l0 = rf ⇤l rf> with
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Now we can rewrite the line equation as y = g(x) = l0 · x with
x = (x 1)> and the variance of y becomes

�2
y

(x) = rg ⇤l0 rg>

with rg = x>. So, finally the conditional density p(y|x) remains de-
fined as

p(y|x) = N
�
y; y,�2

y

(x)
�
. (2)

See also fig. 3.

Regression information gain. In a regression forest the objective
function of the jth split node is

I
j

= H(S
j
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with the entropy for a generic training subset S defined as
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which when plugged into (3) yields the information gain
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up to a constant scale factor which has no influence over the node
optimization procedure and thus can be ignored.

In this appendix we have derived the regression information gain
for the simple case of 1D input x and 1D output y. It is easy to up-
grade the derivation to multivariate variables, yielding the more general
regression information gain in (4.2).
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